Circle Health Collagen

Apa Kandungan dan Komposisi Circle Health Collagen?

Kandungan dan komposisi produk obat maupun suplemen dibedakan menjadi dua jenis yaitu kandungan aktif dan kandungan tidak aktif. Kandungan aktif adalah zat yang dapat menimbulkan aktivitas farmakologis atau efek langsung dalam diagnosis, pengobatan, terapi, pencegahan penyakit atau untuk memengaruhi struktur atau fungsi dari tubuh manusia.

Jenis yang kedua adalah kandungan tidak aktif atau disebut juga sebagai eksipien. Kandungan tidak aktif ini fungsinya sebagai media atau agen transportasi untuk mengantar atau mempermudah kandungan aktif untuk bekerja. Kandungan tidak aktif tidak akan menambah atau meningkatkan efek terapeutik dari kandungan aktif. Beberapa contoh dari kandungan tidak aktif ini antara lain zat pengikat, zat penstabil, zat pengawet, zat pemberi warna, dan zat pemberi rasa. Kandungan dan komposisi Circle Health Collagen adalah:

Setiap 1 tablet mengandung:

  • Collagen 1000 mg
  • Alanine 99 mg
  • Arginine 87 mg
  • Aspartic Acid 79 mg
  • Cystine Trace
  • Glutamic Acid 110 mg
  • Glycine 211 mg
  • Histidine 11 mg
  • Hydroxyproline 123 mg
  • Hydroxylysine 13 mg
  • Leucine 35 m
  • Isoleucine 14 mg
  • Lysine 35 mg
  • Methionine 9 mg
  • Phenylalanine 24 mg
  • Proline 75 mg
  • Serine 26 mg
  • Threonine 22 mg
  • Tyrosine 5 mg
  • Valine 22 mg
  • Marine Protein 75 mg

Sekilas Tentang Arginine Pada Circle Health Collagen
Arginine (disingkat Arg atau R) adalah suatu bentuk asam amino. Pada mamalia, arginin diklasifikasikan sebagai asam amino semi esensial atau esensial bersyarat, tergantung pada tahap perkembangan dan status kesehatan individu. Bayi tidak dapat secara efektif mensintesis arginin, sehingga nutrisi penting untuk bayi. Orang dewasa, bagaimanapun, mampu mensintesis arginin dalam siklus urea.

Arginin pertama kali diisolasi dari ekstrak bibit lupin pada tahun 1886 oleh ahli kimia Swiss Ernst Schulze.

Struktur kimia

Arginin terdiri dari rantai lurus alifatik 4-karbon, ujung distalnya dibatasi oleh gugus guanidinium kompleks. Dengan pKa 12,48, gugus guanidinium bermuatan positif dalam lingkungan netral, asam dan bahkan paling basa, dan dengan demikian memberikan sifat kimia dasar pada arginin. Karena konjugasi antara ikatan rangkap dan pasangan mandiri nitrogen, muatan positif terdelokalisasi, memungkinkan pembentukan beberapa ikatan H.

Sumber

Sumber makanan

Arginin adalah asam amino nonesensial, artinya dapat diproduksi oleh tubuh manusia, dan tidak perlu diperoleh secara langsung melalui makanan. Arginin ditemukan dalam berbagai macam makanan, termasuk:

  • Sumber hewani: produk susu (misalnya keju cottage, ricotta, susu kering tanpa lemak, yogurt skim), daging sapi, babi (misalnya bacon, ham), unggas (misalnya daging ringan ayam dan kalkun), hewan buruan (misalnya burung pegar, puyuh), makanan laut (misalnya halibut, lobster, salmon, udang, siput, tuna dalam air)

  • Sumber vegetarian: bibit gandum dan tepung, soba, granola, oatmeal, kacang-kacangan (kelapa, pecan, kacang mete, kenari, almond, kacang Brazil, kacang hazel, kacang tanah), biji-bijian (labu, wijen, bunga matahari), buncis, kedelai dimasak, cokelat

  • Lainnya: beberapa minuman energi


Biosintesis

Arginin disintesis dari citrulline oleh aksi berurutan dari enzim sitosolik argininosuccinate synthetase (ASS) dan argininosuccinate lyase (ASL). Ini sangat mahal, karena sintesis setiap molekul argininosuksinat membutuhkan hidrolisis adenosin trifosfat (ATP) menjadi adenosin monofosfat (AMP); yaitu, dua setara ATP.

Citrulline dapat berasal dari berbagai sumber:

  • dari arginin melalui nitric oxide synthase (NOS);

  • dari ornitin melalui katabolisme prolin atau glutamin/glutamat;

  • dari dimethylarginine asimetris (ADMA) melalui DDAH.


Jalur yang menghubungkan arginin, glutamin, dan prolin adalah dua arah. Dengan demikian, pemanfaatan bersih atau produksi asam amino ini sangat tergantung pada jenis sel dan tahap perkembangan.

Di seluruh tubuh, sintesis arginin terjadi terutama melalui sumbu usus-ginjal, di mana sel-sel epitel usus kecil, yang menghasilkan citrulline terutama dari glutamin dan glutamat, berkolaborasi dengan sel tubulus proksimal ginjal, yang mengekstraksi citrulline dari sirkulasi dan mengubahnya menjadi arginin, yang dikembalikan ke sirkulasi. Akibatnya, gangguan fungsi usus kecil atau ginjal dapat mengurangi sintesis arginin endogen, sehingga meningkatkan kebutuhan diet.

Sintesis arginin dari citrulline juga terjadi pada tingkat yang rendah di banyak sel lain, dan kapasitas seluler untuk sintesis arginin dapat meningkat secara nyata dalam keadaan yang juga menginduksi iNOS. Jadi, citrulline, produk sampingan dari reaksi katalis NOS, dapat didaur ulang menjadi arginin dalam jalur yang dikenal sebagai jalur citrulline-NO atau arginine-citrulline. Hal ini ditunjukkan oleh fakta bahwa dalam banyak jenis sel, citrulline dapat menggantikan arginin sampai tingkat tertentu dalam mendukung sintesis NO. Namun, daur ulang tidak kuantitatif karena citrulline terakumulasi bersama dengan nitrat dan nitrit, produk akhir NO yang stabil, dalam sel penghasil NO.

Fungsi

Arginin berperan penting dalam pembelahan sel, penyembuhan luka, mengeluarkan amonia dari tubuh, fungsi kekebalan tubuh, dan pelepasan hormon. Arginin, diambil dalam kombinasi dengan proanthocyanidins atau yohimbine, juga telah digunakan sebagai pengobatan untuk disfungsi ereksi.

Dalam protein

Geometri, distribusi muatan dan kemampuan untuk membentuk beberapa ikatan H membuat arginin ideal untuk mengikat gugus bermuatan negatif. Untuk alasan ini arginin lebih suka berada di luar protein di mana ia dapat berinteraksi dengan lingkungan kutub. Digabungkan dalam protein, arginin juga dapat diubah menjadi citrulline oleh enzim PAD. Selain itu, arginin dapat dimetilasi oleh protein metiltransferase.

Sebagai pendahulu

Arginin adalah prekursor langsung NO, urea, ornitin dan agmatine; diperlukan untuk sintesis creatine; dan juga dapat digunakan untuk sintesis poliamina (terutama melalui ornitin dan pada tingkat yang lebih rendah melalui agmatine), citrulline, dan glutamat. Untuk menjadi prekursor NO, (mengendurkan pembuluh darah), arginin digunakan dalam banyak kondisi di mana diperlukan vasodilatasi. Kehadiran dimethylarginine asimetris (ADMA), kerabat dekat, menghambat nitric oxide reaksi oksida; oleh karena itu, ADMA dianggap sebagai penanda penyakit pembuluh darah, seperti halnya L-arginin yang dianggap sebagai tanda endotelium yang sehat.

Implikasi dalam replikasi virus herpes simpleks

Studi kultur jaringan telah menunjukkan penekanan replikasi virus ketika rasio lisin terhadap arginin in vitro mendukung lisin. Konsekuensi terapeutik dari temuan ini tidak jelas, tetapi diet arginin dapat mempengaruhi efektivitas suplementasi lisin.

Implikasi dalam berkontribusi terhadap risiko kematian akibat penyakit jantung

Sebuah studi Johns Hopkins baru-baru ini menguji penambahan L-arginin ke pengobatan standar pascainfark telah melibatkan suplementasi L-arginin dengan peningkatan risiko kematian pada pasien yang pulih dari serangan jantung. Studi ini telah dibahas secara rinci dalam: "Reverse Heart Disease Now" oleh Stephen T Sinatra MD dan James C Roberts MD, publ. Wiley 2006 ISBN 0-471-74704-1 pada hal 111 -113.

Hormon pertumbuhan

Arginin meningkatkan produksi hormon pertumbuhan. Laporan efeknya pada perkembangan otot pria tidak terbukti dengan jelas.

Prolaktin

Meskipun belum ada penelitian menyeluruh, beberapa sumber mengklaim bahwa arginin membantu melepaskan prolaktin, senyawa estrogenik yang terkait dengan laktasi, dan seperti semua senyawa estrogenik dapat mengekang sekresi testosteron. Jadi beberapa binaragawan menjauh dari arginin murni, hanya mengonsumsi jumlah yang secara alami ditemukan dalam protein.
Sekilas Tentang Histidine Pada Circle Health Collagen
Histidine adalah salah satu dari 20 asam amino alami paling umum yang ada dalam protein. Dalam pengertian nutrisi, pada manusia, histidin dianggap sebagai asam amino esensial, tetapi kebanyakan hanya pada anak-anak. Kodonnya adalah CAU dan CAC.

Histidin pertama kali diisolasi pada tahun 1896 oleh dokter Jerman Albrecht Kossel.

Sifat kimia

Rantai samping imidazol dan pKa histidin yang relatif netral (ca 6,0) berarti bahwa perubahan pH seluler yang relatif kecil akan mengubah muatannya. Untuk alasan ini, rantai samping asam amino ini banyak digunakan sebagai ligan koordinasi dalam metaloprotein, dan juga sebagai situs katalitik pada enzim tertentu. Rantai samping imidazol memiliki dua nitrogen dengan sifat yang berbeda: Satu terikat pada hidrogen dan menyumbangkan pasangan elektron bebasnya ke cincin aromatik dan dengan demikian sedikit asam, sedangkan yang lain hanya menyumbangkan satu pasangan elektron ke cincin sehingga memiliki elektron bebas bebas. berpasangan dan bersifat dasar. Sifat-sifat ini dieksploitasi dengan cara yang berbeda dalam protein.

Dalam triad katalitik, nitrogen dasar histidin digunakan untuk mengabstraksi proton dari serin, treonin atau sistein untuk mengaktifkannya sebagai nukleofil. Dalam antar-jemput proton histidin, histidin digunakan untuk memindahkan proton dengan cepat, ini dapat dilakukan dengan mengabstraksi proton dengan nitrogen dasarnya untuk membuat zat antara bermuatan positif dan kemudian menggunakan molekul lain, penyangga, untuk mengekstrak proton dari nitrogen asamnya. . Dalam karbonat anhidrase, antar-jemput proton histidin digunakan untuk memindahkan proton dengan cepat menjauh dari molekul air yang terikat seng untuk dengan cepat meregenerasi bentuk aktif enzim.

Karena afinitas histidin terhadap ion logam, peneliti akan sering menambahkan tag polihistidin ke protein yang diinginkan. Afinitas logam kemudian dapat digunakan untuk memurnikan, mendeteksi, atau melumpuhkan protein yang akan dipelajari.

Metabolisme

Asam amino adalah prekursor untuk biosintesis histamin dan carnosine. Enzim histidin amonia-liase mengubah histidin menjadi amonia dan asam urokanat. Defisiensi enzim ini terdapat pada kelainan metabolik yang jarang terjadi histidinemia.
Sekilas Tentang Lysine Pada Circle Health Collagen
Lysine atau lisin (disingkat Lys) adalah asam amino dengan rumus kimia HO2CCH(NH2)(CH2)4NH2. Asam amino ini merupakan asam amino esensial, yang artinya tidak dapat disintesis oleh manusia. Kodonnya adalah AAA dan AAG.

Lisin adalah basa, seperti juga arginin dan histidin. Gugus amino sering berpartisipasi dalam ikatan hidrogen dan sebagai basa umum dalam katalisis. Modifikasi pascatranslasi yang umum termasuk metilasi gugus -amino, memberikan metil-, dimetil-, dan trimetilisin. Yang terakhir terjadi pada calmodulin. Modifikasi pascatranslasi lainnya termasuk asetilasi. Kolagen mengandung hidroksilisin yang diturunkan dari lisin oleh lisil hidroksilase. O-Glikosilasi residu lisin dalam retikulum endoplasma atau aparatus Golgi digunakan untuk menandai protein tertentu untuk disekresikan dari sel.

Biosintesis

Sebagai asam amino esensial, lisin tidak disintesis pada hewan, oleh karena itu harus dicerna sebagai lisin atau protein yang mengandung lisin. Pada tumbuhan dan mikroorganisme, asam aspartat disintesis dari asam aspartat, yang pertama kali diubah menjadi -aspartil-semialdehida. Siklisasi menghasilkan dihidropikolinat, yang direduksi menjadi 1-piperidin-2,6-dikarboksilat. Pembukaan cincin heterosiklus ini memberikan serangkaian turunan asam pimelat, yang akhirnya menghasilkan lisin. Enzim yang terlibat dalam biosintesis ini meliputi:

  • aspartokinase

  • -aspartat semialdehid dehidrogenase

  • Sintase dihidropikolinat

  • 1-piperdin-2,6-dikarboksilat dehidrogenase

  • Sintase N-suksinil-2-amino-6ketopimelat

  • Suksinil diaminopimelat aminotransferase

  • Succinyl diaminopimelate desuccinylase

  • Diaminopimelat epimerase

  • Diaminopimelat dekarboksilase


Metabolisme

Lisin dimetabolisme pada mamalia untuk menghasilkan asetil-KoA, melalui transaminasi awal dengan -ketoglutarat. Degradasi bakteri lisin menghasilkan kadaverin melalui dekarboksilasi.

Perpaduan

Sintetis, rasemat lisin telah lama dikenal. Sintesis praktis dimulai dari kaprolaktam.

Sumber dalam bahan makanan

Kebutuhan nutrisi manusia adalah 1-1,5 g setiap hari. Ini adalah asam amino pembatas (asam amino esensial yang ditemukan dalam jumlah terkecil dalam bahan makanan tertentu) di semua biji-bijian sereal, tetapi berlimpah di semua kacang-kacangan (kacang-kacangan). Tanaman yang mengandung sejumlah besar lisin meliputi:

  • Labu Kerbau (10.130–33.000 ppm) dalam biji

  • Berro, Selada Air (1.340–26.800 ppm) dalam ramuan.

  • Kedelai (24.290–26.560 ppm) dalam biji.

  • Carob, Locust Bean, St.John's-Bread (26.320 ppm) dalam biji;

  • Kacang Biasa (Kacang Hitam, Kacang Kerdil, Kacang Lapangan, Kacang Flageolet, Kacang

  • Prancis, Kacang Kebun, Kacang Hijau, Haricot, Kacang Haricot, Haricot Vert, Kacang Ginjal,

  • Kacang Navy, Kacang Pop, Kacang Popping, Kacang Snap, Kacang Panjang, Wax Bean) (2.390–25.700 ppm) pada bibit kecambah;

  • Ben Nut, Benzolive Tree, Jacinto (Sp.), Moringa (alias Drumstick Tree, Horseradish Tree, Ben Oil Tree), West Indian Ben (5.370–25.165 ppm) di pucuk.

  • Lentil (7.120–23.735 ppm) dalam kecambah kecambah.

  • Kacang Asparagus, Kacang Bersayap (alias Kacang Goa) (21.360–23.304 ppm) dalam biji.

  • Ayam gemuk (3.540–22.550 ppm) dalam biji.

  • Lentil (19,570–22.035 ppm) dalam biji.

  • Lupin Putih (19.330–21.585 ppm) dalam biji.

  • Jintan Hitam, Jintan Hitam, Bunga Adas, Bunga Pala, Ketumbar Romawi (16.200–20.700 ppm) dalam biji.

  • Bayam (1.740–20.664 ppm).

  • Amaranth, Quinoa


Sumber lisin yang baik adalah makanan yang kaya protein termasuk daging (khususnya daging merah, babi, dan unggas), keju (terutama parmesan), ikan tertentu (seperti cod dan sarden), dan telur. Kacang merupakan sumber yang buruk untuk lisin.

Properti

L-Lysine adalah blok bangunan yang diperlukan untuk semua protein dalam tubuh. L-Lisin memainkan peran utama dalam penyerapan kalsium; membangun protein otot; pulih dari operasi atau cedera olahraga; dan produksi hormon, enzim, dan antibodi tubuh.

Signifikansi klinis

Telah disarankan bahwa lisin mungkin bermanfaat bagi mereka yang menderita infeksi herpes simpleks. Namun, penelitian lebih lanjut diperlukan untuk sepenuhnya mendukung klaim ini. Untuk informasi lebih lanjut, lihat Herpes simpleks - Lisin.

Lainnya

Dalam film Jurassic Park dinosaurus secara genetik diubah sehingga mereka tidak dapat menghasilkan lisin ("kontingensi lisin"). Ini dimaksudkan untuk mencegah dinosaurus meninggalkan taman.
Sekilas Tentang Glycine Pada Circle Health Collagen
Glycine (disingkat Gly atau G) adalah senyawa organik dengan rumus HO2CCH2NH2. Ini adalah salah satu dari 20 asam amino yang biasa ditemukan dalam protein, dikodekan oleh kodon GGU, GGC, GGA dan GGG. Karena kesederhanaan strukturalnya, asam amino kompak ini cenderung dilestarikan secara evolusioner, misalnya, sitokrom c, mioglobin, dan hemoglobin. Glycine adalah asam amino unik yang tidak aktif secara optik. Kebanyakan protein hanya mengandung sejumlah kecil glisin. Pengecualian penting adalah kolagen, yang mengandung sekitar 35% glisin. Dalam bentuk padatnya, yaitu, mengkristal, Glycine adalah bahan kristal yang mengalir bebas.

Perpaduan

Glisin diproduksi secara industri:

(1) pengobatan asam kloroasetat dengan amonia mengarah ke produk dalam satu langkah.

ClCH2COOH + NH3 → H2NCH2COOH + HCl
atau melalui

(2) Sintesis Strecker melalui hidrolisis nitril.

Ada dua produsen Glycine di Amerika Serikat. Chattem Chemicals, Inc. dan GEO Specialty Chemicals, Inc., yang membeli fasilitas produksi Glycine dari Hampshire Chemical Corp. Menurut informasi yang diberikan kepada Departemen Perdagangan AS, masing-masing menggunakan proses manufaktur yang berbeda dan bahan baku yang berbeda. Proses manufaktur Chattem (proses "MCA") terjadi dalam batch dan menghasilkan produk jadi dengan beberapa residu klorida tetapi tanpa sulfat, sedangkan proses manufaktur GEO dianggap sebagai proses semi-batch dan menghasilkan produk jadi dengan beberapa residu sulfat tetapi tidak khlorida.

Biosintesis

Glisin tidak penting untuk diet manusia, karena di dalam tubuh dibiosintesis dari asam amino serin, yang pada gilirannya diturunkan dari 3-fosfogliserat. Pada kebanyakan organisme, enzim Serine hydroxymethyltransferase mengkatalisis transformasi ini dengan menghilangkan satu atom karbon; piridoksal fosfat juga diperlukan:

Serin + tetrahidrofolat → Glisin + N5,N10-Metilen tetrahidrofolat + H2O

Di hati vertebrata, sintesis glisin dikatalisis oleh glisin sintase (juga disebut enzim pembelahan glisin). Konversi ini mudah dibalik:

CO2 + NH4+ + N5,N10-Metilen tetrahidrofolat + NADH + H+ → Glisin + tetrahidrofolat + NAD+

Degradasi

Glisin terdegradasi melalui tiga jalur. Jalur utama pada hewan melibatkan katalisis enzim pembelahan glisin, enzim yang sama juga terlibat dalam biosintesis glisin. Jalur degradasi adalah kebalikan dari jalur sintetis ini:

Glisin + tetrahidrofolat + NAD+ → CO2 + NH4+ + N5,N10-Metilen tetrahidrofolat + NADH + H+
Pada jalur kedua, glisin terdegradasi dalam dua langkah. Langkah pertama adalah kebalikan dari biosintesis glisin dari serin dengan serin hidroksimetil transferase. Serin kemudian diubah menjadi piruvat oleh serin dehidratase.

Pada jalur ketiga degradasi glisin, glisin diubah menjadi glioksilat oleh D-asam amino oksidase. Glikoksilat kemudian dioksidasi oleh laktat dehidrogenase hati menjadi oksalat dalam reaksi yang bergantung pada NAD+.

Fungsi fisiologis

Sebagai perantara biosintetik

Glycine adalah blok bangunan untuk banyak produk alami. Pada eukariota yang lebih tinggi, asam D-Aminolevulinat, prekursor kunci untuk porfirin, dibiosintesis dari glisin dan suksinil-KoA. Glisin menyediakan subunit C2N pusat dari semua purin.

Sebagai neurotransmitter

Glycine adalah neurotransmitter inhibisi di sistem saraf pusat, terutama di sumsum tulang belakang, batang otak, dan retina. Ketika reseptor glisin diaktifkan, klorida memasuki neuron melalui reseptor ionotropik, menyebabkan potensi postsinaptik Inhibitor (IPSP). Strychnine adalah antagonis pada reseptor glisin ionotropik. Glisin adalah ko-agonis yang dibutuhkan bersama dengan glutamat untuk reseptor NMDA. Berbeda dengan peran penghambatan glisin di sumsum tulang belakang, perilaku ini difasilitasi pada reseptor glutaminergik (NMDA) yang bersifat rangsang. LD50 glisin adalah 7930 mg/kg pada tikus (oral), dan biasanya menyebabkan kematian karena hipereksitabilitas.

Penggunaan Industri

Glycine digunakan sebagai pemanis / penambah rasa, zat penyangga, asam amino yang dapat diserap kembali, zat antara kimia, zat pengompleks logam, suplemen makanan serta dalam obat-obatan tertentu.

Tarif Antidumping

Glycine yang diimpor dari China ke Amerika Serikat telah dikenakan bea masuk antidumping sejak Maret 1995.

Pada tahun 2007, produsen Glycine Amerika Serikat, GEO Specialty Chemicals, Inc. mengajukan petisi yang meminta agar bea antidumping juga dikenakan pada Glycine yang diimpor dari Jepang, Republik Korea, dan India. Pada tanggal 7 September 2007, Departemen Perdagangan mengumumkan penetapan awal afirmatifnya dalam penyelidikan bea masuk antidumping atas impor glisin dari Jepang dan Republik Korea (Korea). Pada tanggal 29 Oktober 2007, Departemen Perdagangan mengumumkan penetapan awal afirmatifnya dalam penyelidikan bea masuk antidumping atas impor glisin dari India.

Kehadiran di medium antarbintang

Pada tahun 1994 sebuah tim astronom di University of Illinois, yang dipimpin oleh Lewis Snyder, mengklaim bahwa mereka telah menemukan molekul glisin di luar angkasa. Ternyata, dengan analisis lebih lanjut, klaim ini tidak dapat dikonfirmasi. Sembilan tahun kemudian, pada tahun 2003, Yi-Jehng Kuan dari National Taiwan Normal University dan Steve Charnley mengklaim bahwa mereka mendeteksi glisin antarbintang menuju tiga sumber di medium antarbintang. Mereka mengklaim telah mengidentifikasi 27 garis spektrum glisin menggunakan teleskop radio. Menurut simulasi komputer dan eksperimen berbasis laboratorium, glisin mungkin terbentuk ketika es yang mengandung molekul organik sederhana terkena sinar ultraviolet.

Pada bulan Oktober 2004, Snyder dan kolaborator menyelidiki kembali klaim glisin di Kuan et al. (2003). Dalam upaya yang ketat untuk mengkonfirmasi deteksi, Snyder menunjukkan bahwa glisin tidak terdeteksi di salah satu dari tiga sumber yang diklaim.

Jika klaim glisin dibuktikan, temuan itu tidak akan membuktikan bahwa kehidupan ada di luar Bumi, tetapi tentu saja membuat kemungkinan itu lebih masuk akal dengan menunjukkan bahwa asam amino dapat terbentuk di medium antarbintang.
Sekilas Tentang Glutamic Acid (Asam Glutamat) Pada Circle Health Collagen
Glutamic acid (asam glutamat, disingkat Glu atau E; Glx atau Z) mewakili asam glutamat atau glutamat), adalah salah satu dari 20 asam amino proteinogenik. Ini bukan salah satu asam amino esensial manusia. Kodonnya adalah GAA dan GAG. Anion karboksilat dari asam glutamat dikenal sebagai glutamat.

Seperti namanya, asam glutamat memiliki komponen asam karboksilat pada rantai sampingnya. Pada pH yang khas, gugus amino terprotonasi dan salah satu atau kedua gugus karboksilat akan terionisasi. Pada pH netral ketiga kelompok terionisasi, dan spesies memiliki muatan -1. Nilai pKa untuk asam glutamat adalah 4,1, yang berarti bahwa di bawah pH ini, gugus asam karboksilat tidak terionisasi di lebih dari setengah molekul.

Kegunaan

Dalam metabolisme

Glutamat adalah molekul kunci dalam metabolisme sel. Pada manusia, protein makanan dipecah oleh pencernaan menjadi asam amino, yang berfungsi sebagai bahan bakar metabolisme untuk peran fungsional lainnya dalam tubuh. Proses kunci dalam degradasi asam amino adalah transaminasi, di mana gugus amino dari asam amino ditransfer ke asam -keto, biasanya dikatalisis oleh transaminase. Reaksi tersebut dapat digeneralisasikan sebagai berikut:

R1-asam amino + R2-α-ketoasam R1-α-ketoasam + R2-asam amino

Asam -keto yang sangat umum adalah -ketoglutarat, zat antara dalam siklus asam sitrat. Transaminasi -ketoglutarat menghasilkan glutamat. Produk asam -keto yang dihasilkan seringkali berguna juga, yang dapat berkontribusi sebagai bahan bakar atau sebagai substrat untuk proses metabolisme lebih lanjut. Contohnya adalah sebagai berikut:

alanin + -ketoglutarat piruvat + glutamat
aspartat + -ketoglutarat oksaloasetat + glutamat

Baik piruvat dan oksaloasetat adalah komponen kunci dari metabolisme seluler, berkontribusi sebagai substrat atau zat antara dalam proses mendasar seperti glikolisis, glukoneogenesis, dan juga siklus asam sitrat.

Glutamat juga memainkan peran penting dalam pembuangan tubuh kelebihan atau limbah nitrogen. Glutamat mengalami deaminasi, suatu reaksi oksidatif yang dikatalisis oleh glutamat dehidrogenase, sebagai berikut:

glutamat + air + NADP+ → -ketoglutarat + NADPH + amonia + H+

Amonia (sebagai amonium) kemudian diekskresikan terutama sebagai urea, disintesis di hati. Transaminasi dengan demikian dapat dikaitkan dengan deaminasi, secara efektif memungkinkan nitrogen dari gugus amina asam amino dihilangkan, melalui glutamat sebagai perantara, dan akhirnya dikeluarkan dari tubuh dalam bentuk urea.

Sebagai neurotransmitter

Glutamat adalah neurotransmiter rangsang cepat yang paling melimpah di sistem saraf mamalia. Pada sinapsis kimia, glutamat disimpan dalam vesikel. Impuls saraf memicu pelepasan glutamat dari sel pra-sinaptik. Dalam sel pasca-sinaptik yang berlawanan, reseptor glutamat, seperti reseptor NMDA, mengikat glutamat dan diaktifkan. Karena perannya dalam plastisitas sinaptik, diyakini bahwa asam glutamat terlibat dalam fungsi kognitif seperti pembelajaran dan memori di otak.

Transporter glutamat ditemukan di membran neuronal dan glial. Mereka dengan cepat menghilangkan glutamat dari ruang ekstraseluler. Pada cedera atau penyakit otak, mereka dapat bekerja secara terbalik dan kelebihan glutamat dapat menumpuk di luar sel. Proses ini menyebabkan ion kalsium memasuki sel melalui saluran reseptor NMDA, yang menyebabkan kerusakan saraf dan akhirnya kematian sel, dan disebut eksitotoksisitas. Mekanisme kematian sel meliputi:

  • Kerusakan mitokondria akibat Ca2+ intraseluler yang terlalu tinggi;

  • Promosi faktor transkripsi yang dimediasi Glu/Ca2+ untuk gen pro-apoptosis, atau penurunan regulasi faktor transkripsi untuk gen anti-apoptosis.


Excitotoxicity karena glutamat terjadi sebagai bagian dari kaskade iskemik dan berhubungan dengan stroke dan penyakit seperti amyotrophic lateral sclerosis, lathyrism, dan penyakit Alzheimer.

Asam glutamat telah terlibat dalam serangan epilepsi. Injeksi mikro asam glutamat ke dalam neuron menghasilkan depolarisasi spontan sekitar satu detik terpisah, dan pola penembakan ini mirip dengan apa yang dikenal sebagai pergeseran depolarisasi paroksismal pada serangan epilepsi. Perubahan potensial membran istirahat pada fokus kejang dapat menyebabkan pembukaan spontan saluran kalsium yang diaktifkan tegangan, yang menyebabkan pelepasan asam glutamat dan depolarisasi lebih lanjut.

Teknik eksperimental untuk mendeteksi glutamat dalam sel utuh termasuk menggunakan nanosensor rekayasa genetika. Sensor adalah perpaduan dari protein pengikat glutamat dan dua protein fluoresen. Ketika glutamat mengikat, fluoresensi sensor di bawah sinar ultraviolet berubah oleh resonansi antara dua fluorofor. Pengenalan nanosensor ke dalam sel memungkinkan deteksi optik konsentrasi glutamat. Analog sintetik asam glutamat yang dapat diaktifkan oleh sinar ultraviolet juga telah dijelaskan. Metode pelepasan selubung yang cepat dengan fotostimulasi ini berguna untuk memetakan hubungan antar neuron, dan memahami fungsi sinaps.

Pensinyalan glutamatergik nonsinaptik pada otak

Glutamat ekstraseluler di otak Drosophila telah ditemukan mengatur pengelompokan reseptor glutamat pascasinaps, melalui proses yang melibatkan desensitisasi reseptor. Sebuah gen yang diekspresikan dalam sel glial secara aktif mengangkut glutamat ke dalam ruang ekstraseluler, sementara di nukleus accumbens yang merangsang reseptor glutamat metabotropik kelompok II ditemukan untuk mengurangi kadar glutamat ekstraseluler. Hal ini meningkatkan kemungkinan bahwa glutamat ekstraseluler ini memainkan peran "seperti endokrin" sebagai bagian dari sistem homeostatik yang lebih besar.

Prekursor GABA

Asam glutamat juga berfungsi sebagai prekursor untuk sintesis penghambatan GABA di neuron GABA-ergic. Reaksi ini dikatalisis oleh GAD, asam glutamat dekarboksilase, yang paling melimpah di otak kecil dan pankreas.

Stiff-man syndrome adalah gangguan neurologis yang disebabkan oleh antibodi anti-GAD, yang menyebabkan penurunan sintesis GABA dan oleh karena itu, gangguan fungsi motorik seperti kekakuan dan kejang otot. Karena pankreas juga berlimpah untuk enzim GAD, kerusakan imunologis langsung terjadi di pankreas dan pasien akan menderita diabetes mellitus.

Sumber dan penyerapan

Asam glutamat hadir dalam berbagai macam makanan dan bertanggung jawab atas salah satu dari lima rasa dasar indera perasa manusia (umami), terutama dalam bentuk fisiologisnya, garam natrium glutamat pada pH netral. Sembilan puluh lima persen dari glutamat makanan dimetabolisme oleh sel-sel usus pada lintasan pertama .

Secara keseluruhan, asam glutamat adalah kontributor tunggal terbesar energi usus. Sebagai sumber umami, garam natrium dari asam glutamat, monosodium glutamat (MSG) digunakan sebagai aditif makanan untuk meningkatkan rasa makanan, meskipun efek yang sama dapat dicapai dengan mencampur dan memasak bersama bahan-bahan berbeda yang kaya akan asam amino ini. dan zat umami lainnya juga.

Sumber MSG lainnya adalah buah-buahan, sayuran dan kacang-kacangan yang telah disemprot dengan Auxigro. Auxigro adalah penambah pertumbuhan yang mengandung 30% asam glutamat.

Fufeng Group Limited yang berbasis di Cina adalah produsen Asam Glutamat terbesar di dunia, dengan kapasitas meningkat menjadi 300.000 ton pada akhir tahun 2006 dari 180.000 ton selama tahun 2006, menempatkan mereka di 25 - 30% dari pasar Cina. Meihua adalah produsen Cina terbesar kedua. Bersama-sama, lima produsen teratas memiliki sekitar 50% saham di China. Permintaan China kira-kira 1,1 juta ton per tahun, sedangkan permintaan global, termasuk China, adalah 1,7 juta ton per tahun.

Farmakologi

Obat phencyclidine (lebih dikenal sebagai PCP) memusuhi asam glutamat secara non-kompetitif pada reseptor NMDA. Untuk alasan yang sama, dosis sub-anestesi Ketamine memiliki efek disosiatif dan halusinogen yang kuat. Glutamat tidak mudah melewati sawar darah otak, tetapi transpor ini dimediasi oleh sistem transpor afinitas tinggi. Itu juga dapat diubah menjadi glutamin.
Sekilas Tentang Collagen Pada Circle Health Collagen
Kolagen adalah protein utama jaringan ikat pada hewan dan protein paling melimpah pada mamalia, membentuk sekitar 25% dari total kandungan protein.

Penggunaan

Kolagen adalah salah satu protein struktural berserat panjang yang fungsinya sangat berbeda dengan protein globular seperti enzim; bundel kuat kolagen yang disebut serat kolagen adalah komponen utama dari matriks ekstraseluler yang mendukung sebagian besar jaringan dan memberikan struktur sel dari luar, tetapi kolagen juga ditemukan di dalam sel tertentu. Kolagen memiliki kekuatan tarik yang besar, dan merupakan komponen utama dari fasia, tulang rawan, ligamen, tendon, tulang dan gigi. Seiring dengan keratin lunak, ia bertanggung jawab untuk kekuatan dan elastisitas kulit, dan degradasinya menyebabkan kerutan yang menyertai penuaan. Ini memperkuat pembuluh darah dan berperan dalam perkembangan jaringan . Ini hadir di kornea dan lensa mata dalam bentuk kristal. Ini juga digunakan dalam operasi kosmetik dan operasi luka bakar.

Kegunaan industri

Jika kolagen dihidrolisis sebagian, tiga untai tropokolagen terpisah menjadi gulungan acak globular, menghasilkan gelatin, yang digunakan dalam banyak makanan, termasuk makanan penutup gelatin rasa. Selain makanan, gelatin telah digunakan dalam industri farmasi, kosmetik, dan fotografi. Kolagen dan gelatin adalah protein berkualitas rendah karena tidak mengandung semua asam amino esensial yang dibutuhkan tubuh manusia - mereka bukan protein lengkap. Produsen suplemen makanan berbasis kolagen mengklaim bahwa produk mereka dapat meningkatkan kualitas kulit dan kuku serta kesehatan sendi. Namun, penelitian ilmiah arus utama belum menunjukkan bukti apa pun untuk mendukung klaim ini. Individu dengan masalah di area ini lebih mungkin menderita beberapa kondisi mendasar lainnya daripada kekurangan protein.

Dari bahasa Yunani untuk lem, kolla, kata kolagen berarti "penghasil lem" dan mengacu pada proses awal merebus kulit dan otot kuda dan hewan lain untuk mendapatkan lem. Perekat kolagen digunakan oleh orang Mesir sekitar 4.000 tahun yang lalu, dan penduduk asli Amerika menggunakannya dalam busur sekitar 1.500 tahun yang lalu. Lem tertua di dunia, dengan tanggal karbon lebih dari 8.000 tahun, ditemukan sebagai kolagen — digunakan sebagai lapisan pelindung pada keranjang tali dan kain bordir, dan untuk menyatukan peralatan; juga dalam dekorasi silang pada tengkorak manusia. Kolagen biasanya berubah menjadi gelatin, tetapi bertahan karena kondisi kering. Perekat hewan bersifat termoplastik, melunak lagi saat dipanaskan ulang, sehingga masih digunakan dalam pembuatan alat musik seperti biola halus dan gitar, yang mungkin harus dibuka kembali untuk diperbaiki — aplikasi yang tidak kompatibel dengan perekat plastik sintetis yang kuat, yang bersifat permanen. Otot dan kulit binatang, termasuk kulit, telah digunakan untuk membuat barang yang berguna selama ribuan tahun.

Lem gelatin-resorsinol-formaldehida (dan dengan formaldehida diganti dengan pentanedial dan etanedial yang kurang beracun) telah digunakan untuk memperbaiki sayatan eksperimental di paru-paru kelinci.

Penggunaan medis

Kolagen telah banyak digunakan dalam bedah kosmetik, sebagai bantuan penyembuhan untuk pasien luka bakar untuk rekonstruksi tulang dan berbagai keperluan gigi, ortopedi dan bedah. Beberapa hal menarik adalah:

  • ketika digunakan secara kosmetik, ada kemungkinan reaksi alergi yang menyebabkan kemerahan berkepanjangan; namun, ini sebenarnya dapat dihilangkan dengan uji tempel yang sederhana dan tidak mencolok sebelum penggunaan kosmetik, dan
    sebagian besar kolagen medis berasal dari sapi potong muda (bovine) dari hewan bebas BSE (Bovine spongiform encephalopathy) bersertifikat. Sebagian besar produsen menggunakan hewan donor baik dari "kawanan tertutup", atau dari negara-negara yang tidak pernah memiliki kasus BSE yang dilaporkan seperti Australia dan Selandia Baru.
    jaringan porcine (babi) juga banyak digunakan untuk memproduksi lembaran kolagen untuk berbagai keperluan bedah.

  • karena perawatan dalam pemuliaan dan seleksi hewan donor, serta teknologi yang digunakan dalam persiapan kolagen dari sumber hewani, kemungkinan reaksi imun atau penularan penyakit hampir dihilangkan.

  • alternatif menggunakan lemak pasien sendiri, asam hialuronat atau gel poliakrilamida sudah tersedia.


Kolagen banyak digunakan dalam konstruksi pengganti kulit buatan yang digunakan dalam pengelolaan luka bakar yang parah. Kolagen ini dapat berasal dari sumber sapi, kuda atau babi, dan bahkan manusia, dan kadang-kadang digunakan dalam kombinasi dengan silikon, glikosaminoglikan, fibroblas, faktor pertumbuhan, dan zat lainnya.

Kolagen juga dijual secara komersial sebagai suplemen mobilitas sendi. Ini tidak memiliki penelitian yang mendukung karena protein hanya akan dipecah menjadi asam amino basa selama pencernaan, dan bisa pergi ke berbagai tempat selain sendi tergantung pada kebutuhan dan urutan DNA.

Baru-baru ini alternatif untuk kolagen yang berasal dari hewan telah tersedia. Meskipun mahal, kolagen manusia ini, yang berasal dari mayat donor, plasenta, dan janin yang diaborsi, dapat meminimalkan kemungkinan reaksi imun.

Komposisi dan struktur

Struktur Kolagen luput dari perhatian ilmuwan selama beberapa dekade. Banyak sarjana terkemuka, termasuk pemenang Nobel seperti Watson dan Crick dan Linus Pauling diketahui telah bekerja pada struktur kolagen ketika akhirnya ditemukan. Struktur heliks rangkap tiga yang diketahui benar pada dasarnya diusulkan oleh G. N. Ramachandran dan Gopinath Kartha pada tahun 1954. Struktur yang diusulkan ini kemudian dikenal sebagai heliks Madras.

Subunit tropocollagen atau "molekul kolagen" adalah batang dengan panjang sekitar 300 nm dan diameter 1,5 nm, terdiri dari tiga untai polipeptida, yang masing-masing merupakan heliks kidal, berbeda dengan heliks alfa yang umum terjadi, yang adalah tangan kanan. Ketiga heliks kidal ini dipelintir bersama menjadi kumparan melingkar kanan, triple helix atau "super helix", struktur kuaterner kooperatif yang distabilkan oleh banyak ikatan hidrogen. Subunit Tropocollagen secara spontan berkumpul sendiri, dengan ujung yang terhuyung-huyung secara teratur, menjadi susunan yang lebih besar di ruang ekstraseluler jaringan . Ada beberapa ikatan silang kovalen dalam heliks rangkap tiga, dan jumlah ikatan silang kovalen yang bervariasi antara heliks tropokolagen, untuk membentuk berbagai jenis kolagen yang ditemukan di jaringan dewasa yang berbeda — mirip dengan situasi yang ditemukan dengan -keratin di rambut. Ketidaklarutan kolagen menjadi kendala penelitian hingga ditemukan bahwa tropokolagen dari hewan muda dapat diekstraksi karena belum sepenuhnya berikatan silang.

Fibril kolagen adalah molekul kolagen yang dikemas ke dalam bundel tumpang tindih yang terorganisir. Serat kolagen adalah kumpulan fibril.

Ciri khas kolagen adalah susunan asam amino yang teratur di masing-masing dari tiga rantai subunit kolagen ini. Urutannya sering mengikuti pola Gly-X-Pro atau Gly-X-Hyp, di mana X mungkin merupakan salah satu dari berbagai residu asam amino lainnya. Gly-Pro-Hyp sering terjadi. Pengulangan teratur dan kandungan glisin yang tinggi ini hanya ditemukan pada beberapa protein berserat lainnya, seperti fibroin sutra. 75-80% sutra adalah (kurang-lebih) -Gly-Ala-Gly-Ala- dengan 10% serin — dan elastin kaya akan glisin, prolin, dan alanin (Ala), yang gugus sampingnya kecil, metil inert. Glisin tinggi dan pengulangan teratur seperti itu tidak pernah ditemukan dalam protein globular. Gugus samping yang reaktif secara kimia tidak diperlukan dalam protein struktural seperti pada enzim dan protein transpor. Kandungan cincin Prolin dan Hidroksiprolin yang tinggi, dengan gugus karboksil dan (sekunder) yang dibatasi secara geometris, menyebabkan kecenderungan untaian polipeptida individu untuk membentuk heliks kidal secara spontan, tanpa ikatan hidrogen intrarantai.

Karena glisin adalah asam amino terkecil, ia memainkan peran unik dalam protein struktural berserat. Dalam kolagen, Gly diperlukan di setiap posisi ketiga karena perakitan triple helix menempatkan residu ini di bagian dalam (sumbu) heliks, di mana tidak ada ruang untuk kelompok samping yang lebih besar daripada atom hidrogen tunggal glisin. Untuk alasan yang sama, cincin Pro dan Hyp harus mengarah ke luar. Kedua asam amino ini menstabilkan triple helix secara termal — Hyp bahkan lebih daripada Pro — dan lebih sedikit dari mereka yang dibutuhkan pada hewan seperti ikan, yang suhu tubuhnya rendah.

Dalam tulang, seluruh heliks rangkap tiga kolagen terletak pada susunan yang paralel dan terhuyung-huyung. Celah 40 nm antara ujung subunit tropocollagen mungkin berfungsi sebagai situs nukleasi untuk pengendapan kristal panjang, keras, halus dari komponen mineral, yang (kurang lebih) hidroksiapatit, Ca5(PO4)3(OH), dengan beberapa fosfat. Dengan cara inilah jenis tulang rawan tertentu berubah menjadi tulang. Kolagen memberi tulang elastisitasnya dan berkontribusi pada ketahanan patah tulang.

Jenis kolagen dan gangguan terkait

Kolagen terjadi di banyak tempat di seluruh tubuh. Ada 28 jenis kolagen yang dijelaskan dalam literatur. Lebih dari 90% kolagen dalam tubuh, bagaimanapun, adalah Kolagen I, II, III, dan IV. Cara sederhana untuk mengingat fungsi umumnya adalah:

Collagen One - BONE (komponen utama tulang)
Collagen Two - carTWOlige (komponen utama tulang rawan)
Collagen Three - reTHREEculate (komponen utama serat retikuler)
Kolagen Four - Floor- membentuk membran dasar

Penyakit kolagen umumnya timbul dari cacat genetik yang mempengaruhi biosintesis, perakitan, modifikasi pascatranslasi, sekresi, atau proses lain dalam produksi kolagen normal.

Pewarnaan

Dalam histologi, kolagen berwarna cerah eosinofilik (merah muda) pada slide H&E standar. Pewarna metil violet dapat digunakan untuk mewarnai kolagen dalam sampel jaringan .

Pewarna metil biru juga dapat digunakan untuk pewarnaan kolagen dan pewarna imunohistokimia tersedia jika diperlukan.

Pewarnaan terbaik untuk digunakan dalam membedakan kolagen dari serat lain adalah pewarnaan trichrome Masson.

Kolagen bersifat birefringen bila diwarnai dengan Sirius red F3B (C.I. 35782).

Perpaduan

Asam amino

Kolagen memiliki komposisi dan urutan asam amino yang tidak biasa:

  • Glisin (Gly) ditemukan di hampir setiap residu ketiga

  • Prolin (Pro) membentuk sekitar 9% kolagen

  • Kolagen mengandung dua asam amino turunan yang tidak biasa yang tidak langsung disisipkan selama translasi. Asam amino ini ditemukan di lokasi spesifik relatif terhadap glisin dan dimodifikasi pasca-translasi oleh enzim yang berbeda, yang keduanya membutuhkan vitamin C sebagai kofaktor.

    • Hidroksiprolin (Hyp), berasal dari prolin.

    • Hidroksilisin, berasal dari lisin. Tergantung pada jenis kolagen, berbagai jumlah hidroksilisin memiliki disakarida yang melekat padanya.




Pembentukan kolagen I

Sebagian besar kolagen terbentuk dengan cara yang sama, tetapi proses berikut ini khas untuk tipe I:

Di dalam sel

Tiga rantai peptida terbentuk (rantai 2 alfa-1 dan 1 alfa-2) di ribosom di sepanjang Retikulum Endoplasma Kasar (Rough Endoplasmic Reticulum/RER). Rantai peptida ini (dikenal sebagai preprocollagen) memiliki peptida registrasi di setiap ujungnya; dan peptida sinyal juga melekat pada masing-masing
Rantai peptida dikirim ke lumen RER
Sinyal Peptida dibelah di dalam RER dan rantainya sekarang dikenal sebagai procollagen
Hidroksilasi asam amino lisin dan prolin terjadi di dalam lumen. Proses ini bergantung pada Asam Askorbat (Vitamin C) sebagai kofaktor
Glikosilasi asam amino terhidroksilasi spesifik terjadi
Struktur heliks rangkap tiga terbentuk di dalam RER
Prokolagen dikirim ke aparatus golgi, di mana ia dikemas dan disekresikan oleh eksositosis

Di luar sel

Registrasi peptida dibelah dan tropocollagen dibentuk oleh procollagen peptidase.
Beberapa molekul tropocollagen membentuk fibril kolagen, dan beberapa fibril kolagen terbentuk menjadi serat kolagen
Kolagen melekat pada membran sel melalui beberapa jenis protein, termasuk fibronektin dan integrin.

Patogenesis sintetis

Kekurangan vitamin C menyebabkan penyakit kudis, penyakit serius dan menyakitkan di mana kolagen yang rusak mencegah pembentukan jaringan ikat yang kuat. Gusi memburuk dan berdarah, dengan kehilangan gigi; menghitamkan kulit, dan luka tidak sembuh-sembuh. Sebelum abad kedelapan belas, kondisi ini terkenal di kalangan militer jangka panjang, khususnya angkatan laut, ekspedisi di mana peserta kekurangan makanan yang mengandung Vitamin C. Dalam tubuh manusia, kerusakan sistem kekebalan, yang disebut penyakit autoimun, mengakibatkan respon imun di mana serat kolagen yang sehat secara sistematis dihancurkan dengan peradangan jaringan di sekitarnya. Proses penyakit yang dihasilkan disebut Lupus eritematosus, dan rheumatoid arthritis, atau gangguan jaringan kolagen.

Banyak bakteri dan virus memiliki faktor virulensi yang merusak kolagen atau mengganggu produksinya.
Sekilas Tentang Isoleucine Pada Circle Health Collagen
Isoleucine (isoleusin (disingkat Ile atau I)) adalah asam amino dengan rumus kimia HO2CCH(NH2)CH(CH3)CH2CH3. Ini adalah asam amino esensial, yang berarti bahwa manusia tidak dapat mensintesisnya, jadi itu harus menjadi bagian dari makanan kita. Kodonnya adalah AUU, AUC dan AUA.

Dengan rantai samping hidrokarbon, isoleusin diklasifikasikan sebagai asam amino hidrofobik. Bersama dengan treonin, isoleusin adalah salah satu dari dua asam amino umum yang memiliki rantai samping kiral. Empat stereoisomer isoleusin dimungkinkan, termasuk dua kemungkinan diastereomer L-isoleusin. Namun, isoleusin yang ada di alam ada dalam satu bentuk enansiomer, asam (2S,3S)-2-amino-3-metilpentanoat.

Biosintesis

Sebagai asam amino esensial, isoleusin tidak disintesis pada hewan, oleh karena itu harus dicerna, biasanya sebagai komponen protein. Pada tumbuhan dan mikroorganisme, disintesis melalui beberapa langkah, mulai dari asam piruvat dan alfa-ketoglutarat. Enzim yang terlibat dalam biosintesis ini meliputi:

  • Asetolaktat sintase

  • Asam asetohidroksi isomeroreduktase

  • Dehidratase asam dihidroksi

  • Valin aminotransferase

Sekilas Tentang Threonine Pada Circle Health Collagen
Threonine (treonin (disingkat Thr atau T)) adalah asam amino dengan rumus kimia HO2CCH(NH2)CH(OH)CH3. Kodonnya adalah ACU, ACA, ACC, dan ACG. Asam amino esensial ini tergolong polar. Bersama dengan serin dan tirosin, treonin adalah salah satu dari tiga asam amino proteinogenik yang mengandung gugus alkohol.

Residu treonin rentan terhadap berbagai modifikasi pascatranslasi. Rantai samping hidroksi dapat mengalami glikosilasi terkait-O. Selain itu, residu treonin mengalami fosforilasi melalui aksi kinase treonin. Dalam bentuk terfosforilasi, dapat disebut sebagai fosfotreonin.

Allo-treonin

Dengan dua pusat kiral, treonin dapat berada dalam empat kemungkinan stereoisomer, atau dua kemungkinan diastereomer L-treonin. Namun, nama L-treonin digunakan untuk satu enansiomer tunggal, asam (2S,3R)-2-amino-3-hidroksibutanoat. Diastereomer kedua (2S,3S), yang jarang ada di alam, disebut L-allo-treonin.

Biosintesis

Sebagai asam amino esensial, treonin tidak disintesis pada manusia, oleh karena itu kita harus menelan treonin dalam bentuk protein yang mengandung treonin. Pada tumbuhan dan mikroorganisme, treonin disintesis dari asam aspartat melalui -aspartil-semialdehida dan homoserin. Homoserin mengalami O-fosforilasi; ester fosfat ini mengalami hidrolisis bersamaan dengan relokasi gugus OH. Enzim yang terlibat dalam biosintesis khas treonin meliputi:

  • aspartokinase

  • α-aspartate semialdehyde dehydrogenase

  • homoserine dehydrogenase

  • homoserine kinase

  • threonine synthase


Metabolisme

Treonin dimetabolisme dalam dua cara:

  • Ini diubah menjadi piruvat melalui Threonine Dehydrogenase. Zat antara dalam jalur ini dapat menjalani tiolisis dengan KoA untuk menghasilkan Asetil-KoA dan glisin.

  • Pada manusia, ia diubah menjadi alfa-ketobutirat dalam jalur yang kurang umum melalui enzim Serine dehidratase, dan dengan demikian memasuki jalur yang mengarah ke suksinil-KoA.


Sumber

Makanan tinggi treonin termasuk keju cottage, unggas, ikan, daging, lentil, dan biji wijen.

Treonin rasemat dapat dibuat dari asam krotonat dengan fungsi alfa menggunakan merkuri(II) asetat.
Sekilas Tentang Methionine Pada Circle Health Collagen
Methionine (metionin) adalah asam amino dengan rumus kimia HO2CCH(NH2)CH2CH2SCH3. Asam amino esensial ini tergolong nonpolar. Bersama dengan sistein, metionin adalah salah satu dari dua asam amino proteinogenik yang mengandung sulfur. Turunannya S-adenosyl methionine (SAM) berfungsi sebagai donor metil. Metionin adalah perantara dalam biosintesis sistein, karnitin, taurin, lesitin, fosfatidilkolin, dan fosfolipid lainnya. Konversi metionin yang tidak tepat dapat menyebabkan aterosklerosis.

Metionin adalah salah satu dari hanya dua asam amino yang dikodekan oleh kodon tunggal (AUG) dalam kode genetik standar (triptofan, dikodekan oleh UGG, adalah yang lain). Kodon AUG juga penting, karena membawa pesan "Mulai" untuk ribosom yang menandakan inisiasi translasi protein dari mRNA. Akibatnya, metionin dimasukkan ke dalam posisi terminal-N dari semua protein pada eukariota dan archaea selama translasi, meskipun biasanya dihilangkan dengan modifikasi pasca-translasi.

Biosintesis

Sebagai asam amino esensial, metionin tidak disintesis pada manusia, oleh karena itu kita harus menelan metionin atau protein yang mengandung metionin. Pada tumbuhan dan mikroorganisme, metionin disintesis melalui jalur yang menggunakan asam aspartat dan sistein. Pertama, asam aspartat diubah melalui -aspartil-semialdehida menjadi homoserin, memperkenalkan pasangan gugus metilen yang berdekatan. Homoserin diubah menjadi O-suksinil homoserin, yang kemudian bereaksi dengan sistein untuk menghasilkan sistein, yang dibelah untuk menghasilkan homosistein. Metilasi berikutnya dari gugus tiol oleh folat menghasilkan metionin. Baik cystathionine-γ-synthase dan cystathionine-β-lyase membutuhkan Pyridoxyl-5'-phosphate sebagai kofaktor, sedangkan homocysteine ​​methyltransferase membutuhkan Vitamin B12 sebagai kofaktor.

Enzim yang terlibat dalam biosintesis metionin:

  • aspartokinase

  • β-aspartate semialdehyde dehydrogenase

  • homoserine dehydrogenase

  • homoserine acyltransferase

  • cystathionine-γ-synthase

  • cystathionine-β-lyase

  • methionine synthase (in mammals, this step is performed by homocysteine methyltransferase)


Jalur biokimia lainnya

Meskipun mamalia tidak dapat mensintesis metionin, mereka masih dapat menggunakannya dalam berbagai jalur biokimia:

Metionin diubah menjadi S-adenosilmetionin (SAM) oleh (1) metionin adenosiltransferase. SAM berfungsi sebagai metil-donor dalam banyak (2) reaksi methyltransferase dan diubah menjadi S-adenosylhomocysteine ​​(SAH). (3) adenosylhomocysteinase mengubah SAH menjadi homocysteine.

Ada dua homosistein:

  • Metionin dapat diregenerasi dari homosistein melalui (4) metionin sintase. Ini juga dapat diremetilasi menggunakan glisin betaine (NNN-trimetil glisin) menjadi metionin melalui enzim Betaine-homocysteine ​​methyltransferase (E.C.2.1.1.5, BHMT). BHMT membuat hingga 1,5% dari semua protein larut hati, dan bukti terbaru menunjukkan bahwa itu mungkin memiliki pengaruh yang lebih besar pada homeostasis metionin dan homosistein daripada Metionin sythase.

  • Homosistein dapat diubah menjadi sistein. (5) Cystathionine-β-synthase (enzim yang bergantung pada PLP) menggabungkan homocysteine ​​​​dan serin untuk menghasilkan cystathionine. Alih-alih mendegradasi cystathionine melalui cystathionine--lyase, seperti pada jalur biosintetik, cystathionine dipecah menjadi cysteine ​​dan -ketobutyrate melalui (6) cystathionine-γ-lyase. (7) -ketoacid dehydrogenase mengubah -ketobutyrate menjadi propionyl-CoA, yang dimetabolisme menjadi succinyl-CoA dalam proses tiga langkah (lihat jalur propionil-CoA).


Perpaduan

Rasemik metionin dapat disintesis dari dietil natrium ftalimidomalonat melalui alkilasi dengan kloroetilmetilsulfida (ClCH2CH2SCH3) diikuti dengan hidrolisis dan dekarboksilasi.

Aspek diet

Metionin tingkat tinggi dapat ditemukan dalam biji wijen, kacang Brazil, ikan, daging, dan beberapa biji tanaman lainnya. Kebanyakan buah dan sayuran mengandung sangat sedikit; namun, beberapa memiliki jumlah yang signifikan, seperti bayam, kentang, dan jagung rebus. DL-metionin terkadang ditambahkan sebagai bahan makanan hewan peliharaan. Metionin, sistein, dan protein kedelai yang dipanaskan dalam sedikit air menciptakan aroma seperti daging.
Sekilas Tentang Phenylalanine Pada Circle Health Collagen
Phenylalanine (fenilalanin (disingkat Phe atau F)) adalah asam amino dengan rumus HO2CCH(NH2)CH2C6H5. Asam amino esensial ini diklasifikasikan sebagai nonpolar karena sifat hidrofobik dari rantai samping benzil. Kodon untuk L-fenilalanin adalah UUU dan UUC. Ini adalah putih, bubuk padat. L-Phenylalanine (LPA) adalah asam amino elektrik netral, salah satu dari dua puluh asam amino umum yang digunakan untuk membentuk protein secara biokimia, dikodekan oleh DNA.

Biosintesis

Fenilalanin tidak dapat dibuat oleh hewan, yang harus mendapatkannya dari makanan mereka. Ini diproduksi oleh tanaman dan sebagian besar mikroorganisme dari prephenate, zat antara pada jalur shikimate.

Prefenat didekarboksilasi dengan hilangnya gugus hidroksil untuk menghasilkan fenilpiruvat. Spesies ini ditransaminasi menggunakan glutamat sebagai sumber nitrogen untuk menghasilkan fenilalanin dan -ketoglutarat.

Peran biologis lainnya

L-fenilalanin juga dapat diubah menjadi L-tirosin, salah satu asam amino yang dikodekan DNA. L-tirosin pada gilirannya diubah menjadi L-DOPA, yang selanjutnya diubah menjadi dopamin, norepinefrin (noradrenalin), dan epinefrin (adrenalin) (tiga yang terakhir dikenal sebagai katekolamin).

Fenilalanin menggunakan saluran transpor aktif yang sama dengan triptofan untuk melintasi sawar darah-otak, dan, dalam jumlah besar, mengganggu produksi serotonin.

Lignin berasal dari fenilalanin dan dari tirosin. Fenilalanin diubah menjadi asam sinamat oleh enzim fenilalanin amonia liase.

Fenilketonuria

Gangguan genetik fenilketonuria (PKU) adalah ketidakmampuan untuk memetabolisme fenilalanin. Individu dengan gangguan ini dikenal sebagai "fenilketonurik" dan harus berpantang dari konsumsi fenilalanin. Pembatasan diet ini juga berlaku untuk wanita hamil dengan hiperfenilalanin (kadar fenilalanin tinggi dalam darah) karena mereka tidak memetabolisme asam amino fenilalanin dengan benar. Orang yang menderita PKU harus memantau asupan protein mereka untuk mengontrol penumpukan fenilalanin saat tubuh mereka mengubah protein menjadi komponen asam amino.

Masalah terkait adalah senyawa yang ada dalam banyak permen karet dan mint tanpa gula, makanan ringan, minuman ringan tanpa gula (seperti soda diet termasuk CocaCola Zero, Pepsi Max, beberapa bentuk Teh Lipton, diet Nestea, air rasa Clear Splash), dan sejumlah produk makanan rendah kalori lainnya. Pemanis buatan aspartam, dijual dengan nama "Equal" dan "NutraSweet", adalah ester yang dihidrolisis dalam tubuh untuk menghasilkan fenilalanin, asam aspartat, dan metanol (alkohol kayu). Masalah pemecahan fenilketonurik dengan protein dan penimbunan fenilalanin dalam tubuh juga terjadi dengan konsumsi aspartam, meskipun pada tingkat yang lebih rendah. Oleh karena itu, semua produk di AS dan Kanada yang mengandung aspartam harus diberi label: "Phenylketonurics: Mengandung fenilalanin." Di Inggris, makanan yang mengandung aspartam harus membawa panel bahan yang mengacu pada keberadaan 'aspartame atau E951', dan harus diberi label dengan peringatan "Mengandung sumber fenilalanin". Peringatan ini secara khusus ditempatkan untuk membantu individu yang menderita PKU agar dapat menghindari makanan tersebut.

Menariknya, genom kera baru-baru ini diurutkan dan ditemukan bahwa kera secara alami memiliki mutasi yang ditemukan pada manusia yang memiliki PKU.

D- dan DL-fenilalanin

D-fenilalanin (DPA) baik sebagai enansiomer tunggal atau sebagai komponen campuran rasemat tersedia melalui sintesis organik konvensional. Itu tidak berpartisipasi dalam biosintesis protein meskipun ditemukan dalam protein, dalam jumlah kecil, terutama protein tua dan protein makanan yang telah diproses. Fungsi biologis asam D-amino masih belum jelas. Beberapa asam D-amino, seperti D-fenilalanin, mungkin memiliki aktivitas farmakologis.

DL-Phenylalanine dipasarkan sebagai suplemen nutrisi untuk aktivitas analgesik dan antidepresan yang diduga. Aktivitas analgesik diduga DL-fenilalanin dapat dijelaskan oleh kemungkinan penyumbatan oleh D-fenilalanin dari degradasi enkephalin oleh enzim karboksipeptidase A. Mekanisme diduga aktivitas antidepresan DL-fenilalanin dapat dijelaskan oleh peran prekursor L-fenilalanin dalam sintesis neurotransmiter norepinefrin dan dopamin. Peningkatan kadar norepinefrin dan dopamin otak dianggap terkait dengan efek antidepresan. D-fenilalanin diserap dari usus kecil, setelah konsumsi, dan diangkut ke hati melalui sirkulasi portal. Fraksi D-fenilalanin tampaknya diubah menjadi L-fenilalanin. D-fenilalanin didistribusikan ke berbagai jaringan tubuh melalui sirkulasi sistemik. D-fenilalanin tampaknya melintasi penghalang darah-otak dengan efisiensi kurang dari L-fenilalanin. Sebagian kecil dari dosis tertelan D-fenilalanin diekskresikan dalam urin.

Sejarah

Kodon genetik untuk fenilalanin adalah yang pertama ditemukan. Marshall W. Nirenberg menemukan itu dalam m-RNA terdiri dari beberapa urasil mengulangi menjadi E. coli, bakteri menghasilkan protein baru, hanya terdiri dari asam amino fenilalanin berulang.

Circle Health Collagen Obat Apa?


Apa Indikasi, Manfaat, dan Kegunaan Circle Health Collagen?

Indikasi merupakan petunjuk mengenai kondisi medis yang memerlukan efek terapi dari suatu produk kesehatan (obat, suplemen, dan lain-lain) atau kegunaan dari suatu produk kesehatan untuk suatu kondisi medis tertentu. Circle Health Collagen adalah suatu produk kesehatan yang diindikasikan untuk:

Menjaga kecantikan kulit wajah dan tubuh

Sekilas tentang kulit
Kulit merupakan organ terbesar tubuh yang memiliki luasnya sekitar 2 m2 dengan ketebalan rata-rata 1-2 mm. Kulit terdiri dari lapisan epidermis, dermis dan hipodermis atau subkutis.

Sebagai organ yang sangat penting bagi kelangsungan hidup, kulit memiliki fungsi menutupi dan melindungi organ-organ dibawahnya, mencegah infeksi, mengatur suhu tubuh, mengekskresi zat buangan, mensintesis vitamin D, dan menjadi sensor peraba.

Berapa Dosis dan Bagaimana Aturan Pakai Circle Health Collagen?

Dosis adalah takaran yang dinyatakan dalam satuan bobot maupun volume (contoh: mg, gr) produk kesehatan (obat, suplemen, dan lain-lain) yang harus digunakan untuk suatu kondisi medis tertentu serta frekuensi pemberiannya. Biasanya kekuatan dosis ini tergantung pada kondisi medis, usia, dan berat badan seseorang. Aturan pakai mengacu pada bagaimana produk kesehatan tersebut digunakan atau dikonsumsi. Berikut ini dosis dan aturan pakai Circle Health Collagen:

Dewasa:

Minum 2 tablet per hari, sebelum makan selama 12 minggu pertama. Selanjutnya, minum 1 tablet per hari sebelum makan.

Apa saja Perhatian Penggunaan Circle Health Collagen?

Collagen tidak dianjurkan untuk dikonsumsi oleh para remaja yang memasuki masa pubertas karena Plasenta dapat mempercepat kematangan sel-sel tubuh yang dapat berakibat kurang baik bagi mereka yang masih remaja.

Bagaimana Kemasan dan Sediaan Circle Health Collagen?

Dus @ botol 30 tablet

Berapa Nomor Izin BPOM Circle Health Collagen?

Setiap produk obat, suplemen, makanan, dan minuman yang beredar di Indonesia harus mendapatkan izin edar dari BPOM (Badan Pengawas Obat dan Makanan) yaitu suatu Badan Negara yang memiliki fungsi melakukan pemeriksaan terhadap sarana dan prasarana produksi, melakukan pengambilan contoh produk, melakukan pengujian produk, dan memberikan sertifikasi terhadap produk. BPOM juga melakukan pengawasan terhadap produk sebelum dan selama beredar, serta memberikan sanksi administratif seperti dilarang untuk diedarkan, ditarik dari peredaran, dicabut izin edar, disita untuk dimusnahkan, bagi pihak yang melakukan pelanggaran. Berikut adalah izin edar dari BPOM yang dikeluarkan untuk produk Circle Health Collagen:

POM SI 044 514 281

Berapa Harga Circle Health Collagen?

Rp 150.000

Apa Nama Perusahaan Produsen Circle Health Collagen?

Produsen obat (perusahaan farmasi) adalah suatu perusahaan atau badan usaha yang melakukan kegiatan produksi, penelitian, pengembangan produk obat maupun produk farmasi lainnya. Obat yang diproduksi bisa merupakan obat generik maupun obat bermerek. Perusahaan jamu adalah suatu perusahaan yang memproduksi produk jamu yakni suatu bahan atau ramuan berupa tumbuhan, bahan hewan, bahan mineral, sari, atau campuran dari bahan-bahan tersebut yang telah digunakan secara turun-temurun untuk pengobatan. Baik perusahaan farmasi maupun perusahaan jamu harus memenuhi persyaratan yang telah ditetapkan.

Setiap perusahaan farmasi harus memenuhi syarat CPOB (Cara Pembuatan Obat yang Baik), sedangkan perusahaan jamu harus memenuhi syarat CPOTB (Cara Pembuatan Obat Tradisional yang Baik) untuk dapat melakukan kegiatan produksinya agar produk yang dihasilkan dapat terjamin khasiat, keamanan, dan mutunya. Berikut ini nama perusahaan pembuat produk Circle Health Collagen:

Amerikal-USA

Importir

PT Pacific Image International