KA-EN



Deskripsi KA-EN

KA-EN merupakan sediaan infus yang di produksi oleh Otsuka Indonesia. Sediaan infus ini tersedia dalam bentuk KA-EN 3B dan KA-EN 4B yang digunakan sebagai larutan intravena untuk mensuplai cairan dan elektrolit. KA-EN 3B mengandung Na 50 mEq, K 20 mEq, Cl 50 mEq, lactate 20 mEq, glucose 27 g per liter. KA-EN 4B mengandung NaCl 0.585 g, KCl 0.3 g, Na lactate 0.56 g, dextrose 20 g per liter.

Detail KA-EN


  1. KA-EN 3B Botol Plastik
    • Golongan: Obat Keras
    • Kelas Terapi: Elektrolit

    • Apa Kandungan dan Komposisi KA-EN?

      Kandungan dan komposisi produk obat maupun suplemen dibedakan menjadi dua jenis yaitu kandungan aktif dan kandungan tidak aktif. Kandungan aktif adalah zat yang dapat menimbulkan aktivitas farmakologis atau efek langsung dalam diagnosis, pengobatan, terapi, pencegahan penyakit atau untuk memengaruhi struktur atau fungsi dari tubuh manusia.

      Jenis yang kedua adalah kandungan tidak aktif atau disebut juga sebagai eksipien. Kandungan tidak aktif ini fungsinya sebagai media atau agen transportasi untuk mengantar atau mempermudah kandungan aktif untuk bekerja. Kandungan tidak aktif tidak akan menambah atau meningkatkan efek terapeutik dari kandungan aktif. Beberapa contoh dari kandungan tidak aktif ini antara lain zat pengikat, zat penstabil, zat pengawet, zat pemberi warna, dan zat pemberi rasa. Kandungan dan komposisi KA-EN adalah:

      Na 50 mEq, K 20 mEq, Cl 50 mEq, lactate 20 mEq, glucose 27 g per liter

    • Bagaimana Kemasan dan Sediaan KA-EN?


      Cairan Infus
    • Satuan penjualan: Botol Plastik
    • Kemasan: Botol Plastik @ 500 ml

    • Apa Nama Perusahaan Produsen KA-EN?

      Produsen obat (perusahaan farmasi) adalah suatu perusahaan atau badan usaha yang melakukan kegiatan produksi, penelitian, pengembangan produk obat maupun produk farmasi lainnya. Obat yang diproduksi bisa merupakan obat generik maupun obat bermerek. Perusahaan jamu adalah suatu perusahaan yang memproduksi produk jamu yakni suatu bahan atau ramuan berupa tumbuhan, bahan hewan, bahan mineral, sari, atau campuran dari bahan-bahan tersebut yang telah digunakan secara turun-temurun untuk pengobatan. Baik perusahaan farmasi maupun perusahaan jamu harus memenuhi persyaratan yang telah ditetapkan.

      Setiap perusahaan farmasi harus memenuhi syarat CPOB (Cara Pembuatan Obat yang Baik), sedangkan perusahaan jamu harus memenuhi syarat CPOTB (Cara Pembuatan Obat Tradisional yang Baik) untuk dapat melakukan kegiatan produksinya agar produk yang dihasilkan dapat terjamin khasiat, keamanan, dan mutunya. Berikut ini nama perusahaan pembuat produk KA-EN:

      Otsuka Indonesia
  2. KA-EN 3B Soft Bag
    • Golongan= Obat Keras
    • Kelas Terapi= Elektrolit
    • Kandungan= Na 50 mEq, K 20 mEq, Cl 50 mEq, lactate 20 mEq, glucose 27 g per liter
    • Bentuk= Cairan Infus
    • Satuan penjualan= Soft Bag
    • Kemasan= Soft Bag @ 500 ml
    • Farmasi= Otsuka Indonesia
  3. KA-EN 4B Botol Plastik
    • Golongan= Obat Keras
    • Kelas Terapi= Elektrolit
    • Kandungan= NaCl 0.585 g, KCl 0.3 g, Na lactate 0.56 g, dextrose 20 g per liter
    • Bentuk= Cairan Infus
    • Satuan penjualan= Botol Plastik
    • Kemasan= Botol Plastik @ 500 ml dan 1000 ml
    • Farmasi= Otsuka Indonesia
  4. KA-EN 4B Botol Plastik dengan Penutup Karet
    • Golongan= Obat Keras
    • Kelas Terapi= Elektrolit
    • Kandungan= NaCl 0.585 g, KCl 0.3 g, Na lactate 0.56 g, dextrose 20 g per liter
    • Bentuk= Cairan Infus
    • Satuan penjualan= Botol Plastik
    • Kemasan= Botol Plastik @ 500 ml dengan Penutup Karet
    • Farmasi= Otsuka Indonesia
Sekilas Tentang Kalium Pada KA-EN
Kalium atau disebut juga potassium adalah suatu zat kimia berupa logam alkali logam putih keperakan lembut yang terjadi secara alami terikat pada unsur-unsur lain dalam air laut dan banyak mineral. Kalium memiliki simbol K dan nomor atom 19.  Kalium teroksidasi dengan cepat di udara dan sangat reaktif, terutama terhadap air. Dalam banyak hal, kalium dan natrium secara kimiawi serupa, meskipun organisme pada umumnya, dan sel-sel hewan pada khususnya, memperlakukan mereka dengan sangat berbeda.

Sejarah penemuan

Kalium ditemukan di London Inggris oleh Sir Humphry Davy. Pada tahun 1807 ia menurunkannya dari caustic potash (KOH). Kalium adalah logam pertama yang diisolasi dengan elektrolisis. Kalium tidak dikenal di zaman Romawi, dan namanya bukan Latin Klasik melainkan neo-Latin.

Nama kalium diambil dari kata "alkali", yang berasal dari bahasa Arab al qalīy = "abu yang dikalsinasi". Nama potasium berasal dari kata "potash", yang merupakan bahasa Inggris, dan awalnya berarti alkali yang diekstraksi dalam pot dari abu kayu atau daun pohon yang dibakar.

Pembentukan

Kalium membentuk sekitar 1,5% dari berat kerak bumi dan merupakan elemen ketujuh yang paling melimpah. Karena sangat elektropositif, logam kalium sulit diperoleh dari mineralnya. Tidak pernah ditemukan bebas di alam, karena bereaksi hebat dengan air. Garam kalium seperti karnalit, langbeinit, polihalit, dan silvit ditemukan di dasar danau dan laut purba. Mineral ini membentuk deposit yang luas di lingkungan ini, membuat ekstraksi kalium dan garamnya lebih ekonomis. Sumber utama kalium, kalium, ditambang di Saskatchewan, California, Jerman, New Mexico, Utah, dan di tempat lain di seluruh dunia.

Kazakhstan adalah pengekspor kalium terkemuka di dunia. Tiga ribu kaki di bawah permukaan Saskatchewan adalah deposit besar kalium yang merupakan sumber penting dari elemen ini dan garamnya, dengan beberapa tambang besar yang beroperasi sejak tahun 1960-an. Saskatchewan memelopori penggunaan pembekuan pasir basah (formasi Blairmore) untuk mendorong poros tambang melewatinya. Perusahaan pertambangan utama adalah Potash Corporation of Saskatchewan. Lautan adalah sumber lain dari kalium, tetapi jumlah yang ada dalam volume air laut tertentu relatif rendah dibandingkan dengan natrium.

Kalium dapat diisolasi melalui elektrolisis hidroksidanya dalam proses yang tidak banyak berubah sejak Davy. Metode termal juga digunakan dalam produksi kalium, menggunakan kalium klorida.

Properti kimia

Kalium adalah logam paling tidak padat kedua; hanya lithium yang kurang padat. Ini adalah padatan lunak dengan titik leleh rendah yang dapat dengan mudah dipotong dengan pisau. Potasium yang baru dipotong tampak berwarna keperakan, tetapi di udara mulai menodai menjadi abu-abu segera.

Kalium dan senyawanya memancarkan warna ungu dalam nyala api. Fakta ini adalah dasar dari uji nyala untuk keberadaan kalium dalam sampel. Konsentrasi kalium dalam larutan umumnya ditentukan oleh fotometri nyala, spektrofotometri serapan atom, plasma yang digabungkan secara induktif, atau elektroda selektif ion.

Sifat kimia

Kalium harus dilindungi dari udara untuk penyimpanan untuk mencegah disintegrasi logam dari korosi oksida dan hidroksida. Seringkali sampel disimpan di bawah media pereduksi seperti minyak tanah.

Seperti logam alkali lainnya, kalium bereaksi hebat dengan air menghasilkan hidrogen. Reaksi ini terutama lebih keras daripada litium atau natrium dengan air, dan cukup eksotermis sehingga gas hidrogen yang dihasilkan menyala.

2K(s) + 2H2O(l) → H2(g) + 2KOH(aq)

Karena kalium bereaksi cepat bahkan dengan sedikit air, dan produk reaksinya tidak mudah menguap, kadang-kadang digunakan sendiri, atau sebagai NaK (paduan dengan natrium yang cair pada suhu kamar) untuk mengeringkan pelarut sebelum distilasi. Dalam peran ini, ia berfungsi sebagai pengering yang kuat.

Kalium hidroksida bereaksi kuat dengan karbon dioksida untuk menghasilkan kalium karbonat, dan digunakan untuk menghilangkan jejak CO2 dari udara.

Senyawa kalium umumnya memiliki kelarutan air yang sangat baik, karena energi hidrasi ion K+ yang tinggi. Ion kalium tidak berwarna dalam air.

Metode pemisahan kalium dengan pengendapan, kadang-kadang digunakan untuk analisis gravimetri, termasuk penggunaan natrium tetrafenil boron, dihidrogen heksakloroplatinat (IV) heksahidrat, dan natrium kobaltinitrit.

Kalium dalam tubuh

Fungsi biokimia

Kalium penting dalam fungsi saraf dan dalam mempengaruhi keseimbangan osmotik antara sel dan cairan interstisial.

Kalium dapat dideteksi oleh rasa karena memicu tiga dari lima jenis indera perasa, menurut konsentrasinya. Larutan ion kalium encer terasa manis (memungkinkan konsentrasi sedang dalam susu dan jus), sementara konsentrasi yang lebih tinggi menjadi semakin pahit/basa, dan akhirnya juga terasa asin. Perpaduan pahit dan asinnya solusi kandungan kalium tinggi membuat suplementasi kalium dosis tinggi oleh minuman cair tantangan palatabilitas.

Polarisasi membran

Kalium juga penting dalam memungkinkan kontraksi otot dan pengiriman semua impuls saraf pada hewan melalui potensial aksi. Karena interaksi muatan pada ion kalium dan molekul air di sekitarnya, ion K+ lebih besar dari ion Na+, dan saluran ion dan pompa dalam membran sel dapat dengan mudah membedakan antara kedua jenis ion, secara aktif memompa atau secara pasif membiarkan salah satu dari dua ion untuk lewat, sementara menghalangi yang lain.

Kekurangan kalium dalam cairan tubuh dapat menyebabkan kondisi yang berpotensi fatal yang dikenal sebagai hipokalemia, biasanya akibat diare, peningkatan diuresis dan muntah. Gejala defisiensi termasuk kelemahan otot, ileus paralitik, kelainan EKG, penurunan respons refleks dan pada kasus yang parah paralisis pernapasan, alkalosis, dan aritmia jantung.

Filtrasi dan ekskresi

Kalium adalah makronutrien mineral penting dalam nutrisi manusia; itu adalah kation utama (ion positif) di dalam sel hewan, dan dengan demikian penting dalam menjaga keseimbangan cairan dan elektrolit dalam tubuh. Natrium membuat sebagian besar kation plasma darah sekitar 145 miliekuivalen per liter (3345 miligram) dan kalium membentuk sebagian besar kation cairan sel sekitar 150 miliekuivalen per liter (4800 miligram). Plasma disaring melalui glomerulus ginjal dalam jumlah besar, sekitar 180 liter per hari. Jadi 602.000 miligram natrium dan 33.000 miligram kalium disaring setiap hari. Semua kecuali 1000-10.000 miligram natrium dan 1000-4000 miligram kalium yang mungkin ada dalam makanan harus diserap kembali.

Natrium harus direabsorbsi sedemikian rupa untuk menjaga volume darah tetap tepat dan tekanan osmotik benar; kalium harus diserap kembali sedemikian rupa untuk menjaga konsentrasi serum sedekat mungkin dengan 4,8 miliekuivalen (sekitar 190 miligram) per liter. Pompa natrium harus selalu beroperasi untuk menghemat natrium. Kalium kadang-kadang harus disimpan juga, tetapi karena jumlah kalium dalam plasma darah sangat kecil dan kumpulan kalium dalam sel sekitar tiga puluh kali lebih besar, situasinya tidak begitu kritis untuk kalium. Karena kalium dipindahkan secara pasif dalam aliran berlawanan dengan natrium sebagai respons terhadap keseimbangan Donnan yang nyata (tetapi tidak aktual), urin tidak pernah dapat tenggelam di bawah konsentrasi kalium dalam serum kecuali kadang-kadang dengan mengekskresikan air secara aktif. pada akhir pemrosesan.

Kalium disekresikan dua kali dan direabsorbsi tiga kali sebelum urin mencapai tubulus pengumpul. Pada titik itu, biasanya memiliki konsentrasi kalium yang hampir sama dengan plasma. Jika kalium dikeluarkan dari makanan, akan tetap ada ekskresi ginjal wajib minimum sekitar 200 mg per hari ketika serum menurun menjadi 3,0-3,5 miliekuivalen per liter dalam waktu sekitar satu minggu, dan tidak akan pernah dapat dihentikan sepenuhnya. Karena tidak dapat dihentikan sepenuhnya, kematian akan terjadi ketika kalium seluruh tubuh menurun hingga sekitar setengah kapasitas penuh. Pada akhir pemrosesan, kalium disekresikan sekali lagi jika kadar serum terlalu tinggi.

Kalium bergerak secara pasif melalui pori-pori di dinding sel. Ketika ion bergerak melalui pompa, ada gerbang di pompa di kedua sisi dinding sel dan hanya satu gerbang yang bisa dibuka sekaligus. Akibatnya 100 ion dipaksa melalui per detik. Pori-pori hanya memiliki satu gerbang dan hanya ada satu jenis ion yang dapat mengalir dengan kecepatan 10 juta hingga 100 juta ion per detik. Pori-pori membutuhkan kalsium untuk membuka meskipun diperkirakan bahwa kalsium bekerja secara terbalik dengan menghalangi setidaknya salah satu pori-pori. Gugus karbonil di dalam pori pada asam amino meniru hidrasi air yang terjadi dalam larutan air dengan sifat muatan elektrostatik pada empat gugus karbonil di dalam pori.

Kalium dalam makanan

Asupan yang cukup umumnya dapat dijamin dengan mengonsumsi berbagai makanan yang mengandung kalium dan defisiensi jarang terjadi pada individu yang sehat dengan pola makan seimbang. Makanan dengan sumber potasium yang tinggi termasuk alpukat, kentang, pisang, brokoli, jus jeruk, kedelai dan aprikot dari yang tertinggi ke terendah, meskipun juga umum di sebagian besar buah-buahan, sayuran, dan daging. Diet tinggi kalium dapat mengurangi risiko hipertensi dan kekurangan kalium dikombinasikan dengan asupan tiamin yang memadai telah menghasilkan penyakit jantung pada tikus. Pedoman 2004 dari Institute of Medicine menetapkan DRI 4.000 mg potasium, meskipun kebanyakan orang Amerika hanya mengonsumsi setengah dari jumlah itu per hari. Demikian pula, di Uni Eropa, khususnya di Jerman dan Italia, asupan kalium yang tidak mencukupi agak umum terjadi.

Suplemen kalium dalam pengobatan paling banyak digunakan bersama dengan diuretik loop dan tiazid, kelas diuretik yang membersihkan tubuh dari sodium dan air, tetapi memiliki efek samping juga menyebabkan produksi kalium dalam urin. Berbagai suplemen medis tersedia. Jika suplemen kalium digunakan, seperti baking powder bebas natrium dan garam meja bebas natrium, tiamin yang tidak mencukupi dapat menyebabkan beri-beri. Kekurangan vitamin B-1 mungkin terjadi jika makanan yang mengandung sulfit atau sulfur dioksida dimakan atau minuman beralkohol yang difermentasi dengan sulfur dioksida yang dikonsumsi selama makan, karena sulfit menghancurkan vitamin B-1 di usus.

Individu yang menderita penyakit mungkin menderita efek kesehatan yang merugikan dari mengkonsumsi sejumlah besar diet kalium. Pasien gagal tahap akhir yang menjalani terapi dengan dialisis ginjal harus mematuhi batasan diet ketat pada asupan kalium, karena mengontrol ekskresi kalium, dan konsentrasi kalium dalam darah dapat memicu serangan jantung yang fatal. Hiperkalemia akut dapat dikurangi melalui makan soda kue, atau glukosa, hiperventilasi dan keringat.

Kegunaan lainnya


  • Hal ini terutama digunakan dalam pupuk baik sebagai klorida, sulfat atau karbonat - bukan sebagai oksida.

  • Kalium merupakan komponen penting yang dibutuhkan dalam pertumbuhan tanaman dan ditemukan di sebagian besar jenis tanah.

  • Dalam sel hewan, ion kalium sangat penting untuk menjaga sel tetap hidup (lihat pompa Na-K)

  • Kalium klorida digunakan sebagai pengganti garam meja dan juga digunakan untuk mengatasi jantung, mis. dalam operasi jantung dan dalam eksekusi dengan mematikan dalam solusi.

  • Kalium bisulfit (KHSO3) digunakan sebagai pengawet makanan (tetapi tidak dalam daging), pemutihan tekstil dan jerami, pembuatan anggur dan bir, dan dalam penyamakan kulit.

  • Kalium bromat (KBrO3) digunakan sebagai peningkat tepung (E924).

  • Potassium sodium tartrate, atau garam Rochelle (KNaC4H4O6) digunakan dalam baking powder dan obat-obatan.

  • Kalium pirofosfat (K4P2O7) digunakan dalam sabun dan deterjen.

  • Kalium fluorosilikat (K2SiF6) digunakan sebagai insektisida.


Tindakan pencegahan

Kalium padat bereaksi dengan hebat dengan udara, dan karenanya harus disimpan di bawah minyak mineral seperti minyak tanah dan ditangani dengan hati-hati. Namun, tidak seperti litium dan natrium, kalium tidak dapat disimpan di bawah minyak tanpa batas waktu. Jika disimpan lebih dari 6 bulan hingga satu tahun, peroksida peka goncangan yang berbahaya dapat terbentuk pada logam dan di bawah tutup wadah, yang dapat meledak saat dibuka. Direkomendasikan bahwa potasium, rubidium, atau cesium tidak disimpan lebih dari tiga bulan kecuali disimpan dalam atmosfer inert (bebas oksigen), atau di bawah vakum.

Residu kalium hidroksida (KOH) yang sangat basa pada permukaan kalium yang telah terkena uap air, merupakan bahaya kaustik. Seperti halnya logam natrium, rasa "sabun" dari logam kalium pada kulit disebabkan oleh pemecahan kaustik lemak di kulit menjadi sabun kalium lunak yang kasar, dan merupakan awal dari luka bakar alkali. Kalium jelas harus ditangani dengan hati-hati, dengan perlindungan kulit dan mata penuh.

Kalium yang terbakar akan bertambah buruk bila terkena air, dan hanya beberapa bahan kimia kering yang efektif untuk mengatasiny. Kalium juga bereaksi hebat dengan yodium.</span>
Sekilas Tentang Glucose Pada KA-EN
Glucose (glukosa (Glc), monosakarida (atau gula sederhana)) adalah suatu karbohidrat penting dalam biologi. Sel hidup menggunakannya sebagai sumber energi dan perantara metabolisme. Glukosa adalah salah satu produk utama fotosintesis dan memulai respirasi seluler pada prokariota dan eukariota. Nama tersebut berasal dari kata Yunani glykys (γλυκύς), yang berarti "manis", ditambah akhiran "-ose" yang menunjukkan gula.

Dua stereoisomer gula aldoheksosa dikenal sebagai glukosa, hanya satu di antaranya (D-glukosa) yang aktif secara biologis. Bentuk ini (D-glukosa) sering disebut sebagai dekstrosa monohidrat, atau, terutama dalam industri makanan, hanya dekstrosa (dari glukosa dekstrorotatori). Artikel ini membahas bentuk-D glukosa. Gambar cermin molekul, L-glukosa, tidak dapat dimetabolisme oleh sel dalam proses biokimia yang dikenal sebagai glikolisis.

Glukosa umumnya tersedia dalam bentuk zat putih atau sebagai kristal padat. Ini juga dapat ditemukan secara umum sebagai larutan berair.

Struktur kimia

Glukosa (C6H12O6) mengandung enam atom karbon yang salah satunya merupakan bagian dari gugus aldehida dan oleh karena itu disebut sebagai aldoheksosa. Molekul glukosa dapat berada dalam bentuk rantai terbuka (asiklik) dan cincin (siklik) (dalam kesetimbangan), yang terakhir merupakan hasil ikatan kovalen antara atom C aldehida dan gugus hidroksil C-5 untuk membentuk enam- hemiasetal siklik anggota. Dalam larutan air kedua bentuk berada dalam kesetimbangan, dan pada pH 7 bentuk siklik lebih dominan. Karena cincin mengandung lima atom karbon dan satu atom oksigen, yang menyerupai struktur piran, bentuk siklik glukosa juga disebut sebagai glukopiranosa. Pada cincin ini, setiap karbon terikat pada gugus samping hidroksil dengan pengecualian atom kelima, yang terikat pada atom karbon keenam di luar cincin, membentuk gugus CH2OH.

Isomer

Gula aldoheksosa memiliki 4 pusat kiral yang menghasilkan 24 = 16 stereoisomer. Ini dibagi menjadi dua kelompok, L dan D, dengan masing-masing 8 gula. Glukosa adalah salah satu dari gula ini, dan L dan D-glukosa adalah dua dari stereoisomer. Hanya 7 di antaranya ditemukan dalam organisme hidup, di mana D-glukosa (Glu), D-galaktosa (Gal) dan D-mannosa (Manusia) adalah yang paling penting. Kedelapan isomer ini (termasuk glukosa itu sendiri) semuanya diastereoisomer dalam hubungan satu sama lain dan semuanya termasuk dalam seri-D.

Pusat asimetris tambahan di C-1 (disebut atom karbon anomerik) dibuat ketika glukosa mengalami siklus dan dua struktur cincin, yang disebut anomer terbentuk - -glukosa dan -glukosa. Anomer-anomer ini berbeda secara struktural sehubungan dengan posisi relatif gugus hidroksilnya yang terkait dengan C-1 dan gugus pada C-6, yang disebut karbon referensi. Ketika D-glukosa digambarkan sebagai proyeksi Haworth atau dalam konformasi kursi standar, penunjukan berarti bahwa gugus hidroksil yang melekat pada C-1 diposisikan trans ke gugus -CH2OH pada C-5, sedangkan berarti adalah cis. Metode lain yang populer untuk membedakan dari adalah dengan mengamati apakah hidroksil C-1 masing-masing berada di bawah atau di atas bidang cincin, tetapi metode ini merupakan definisi yang tidak akurat dan dapat gagal jika cincin glukosa ditarik terbalik atau dalam konformasi kursi alternatif. Bentuk dan saling berkonversi selama rentang waktu jam dalam larutan berair, ke rasio stabil akhir :β 36:64, dalam proses yang disebut mutarotasi.

Rotamer

Dalam bentuk siklik glukosa, rotasi dapat terjadi di sekitar sudut puntir O6-C6-C5-O5, yang disebut sudut , untuk membentuk tiga konformasi rotamer seperti yang ditunjukkan pada diagram di bawah. Mengacu pada orientasi sudut dan sudut O6-C6-C5-C4 tiga konformasi rotamer staggered stabil disebut gauche-gauche (gg), gauche-trans (gt) dan trans-gauche (tg). Untuk metil -D-glukopiranosa pada kesetimbangan rasio molekul dalam setiap konformasi rotamer dilaporkan sebagai 57:38:5 gg:gt:tg. Kecenderungan sudut untuk lebih memilih untuk mengadopsi konformasi gauche dikaitkan dengan efek gauche.

Produksi

Alami

Glukosa adalah salah satu produk fotosintesis pada tumbuhan dan beberapa prokariota.
Pada hewan dan jamur, glukosa adalah hasil pemecahan glikogen, suatu proses yang dikenal sebagai glikogenolisis. Pada tumbuhan, substrat pemecahannya adalah pati.
Pada hewan, glukosa disintesis di hati dan ginjal dari intermediet non-karbohidrat, seperti piruvat dan gliserol, melalui proses yang dikenal sebagai glukoneogenesis.

Komersial

Glukosa diproduksi secara komersial melalui hidrolisis enzimatik pati. Banyak tanaman dapat digunakan sebagai sumber pati. Jagung, beras, gandum, kentang, singkong, garut, dan sagu semuanya digunakan di berbagai belahan dunia. Di Amerika Serikat, tepung jagung (dari jagung) digunakan hampir secara eksklusif.

Proses enzimatik ini memiliki dua tahap. Selama 1-2 jam mendekati 100 °C, enzim menghidrolisis pati menjadi karbohidrat yang lebih kecil yang masing-masing mengandung rata-rata 5-10 unit glukosa. Beberapa variasi pada proses ini memanaskan campuran pati secara singkat hingga 130 °C atau lebih panas satu kali atau lebih. Perlakuan panas ini meningkatkan kelarutan starch dalam air, tetapi menonaktifkan enzim, dan enzim segar harus ditambahkan ke dalam campuran setelah setiap pemanasan.

Pada langkah kedua, yang dikenal sebagai "sakarifikasi", pati yang terhidrolisis sebagian dihidrolisis sepenuhnya menjadi glukosa menggunakan enzim glukoamilase dari jamur Aspergillus niger. Kondisi reaksi yang khas adalah pH 4,0–4,5, 60 °C, dan konsentrasi karbohidrat 30–35% berat. Dalam kondisi ini, pati dapat diubah menjadi glukosa pada hasil 96% setelah 1-4 hari. Hasil yang lebih tinggi dapat diperoleh dengan menggunakan larutan yang lebih encer, tetapi pendekatan ini membutuhkan reaktor yang lebih besar dan memproses volume air yang lebih besar, dan umumnya tidak ekonomis. Larutan glukosa yang dihasilkan kemudian dimurnikan dengan penyaringan dan dipekatkan dalam evaporator multi-efek. D-glukosa padat kemudian diproduksi oleh kristalisasi berulang.

Kegunaan

Kita dapat berspekulasi tentang alasan mengapa glukosa, dan bukan monosakarida lain seperti fruktosa (Fru), begitu banyak digunakan dalam evolusi, ekosistem, dan metabolisme. Glukosa dapat terbentuk dari formaldehida dalam kondisi abiotik, sehingga mungkin telah tersedia untuk sistem biokimia primitif. Mungkin yang lebih penting untuk kehidupan lanjut adalah kecenderungan rendah glukosa, dibandingkan dengan gula heksosa lainnya, untuk bereaksi secara non-spesifik dengan gugus amino protein. Reaksi ini (glikasi) mengurangi atau menghancurkan fungsi banyak enzim. Tingkat glikasi yang rendah disebabkan oleh preferensi glukosa untuk isomer siklik yang kurang reaktif. Namun demikian, banyak komplikasi jangka panjang diabetes (misalnya, kebutaan, gagal ginjal, dan neuropati perifer) mungkin karena glikasi protein atau lipid. Sebaliknya, penambahan glukosa yang diatur oleh enzim ke protein melalui glikosilasi seringkali penting untuk fungsinya.

Sebagai sumber energi

Glukosa adalah bahan bakar di mana-mana dalam biologi. Ini digunakan sebagai sumber energi di sebagian besar organisme, dari bakteri hingga manusia. Penggunaan glukosa dapat dilakukan dengan respirasi aerobik atau anaerobik (fermentasi). Karbohidrat adalah sumber energi utama tubuh manusia, melalui respirasi aerobik, menyediakan sekitar 4 kalori (17 joule) energi makanan per gram. Pemecahan karbohidrat (misalnya pati) menghasilkan mono dan disakarida, yang sebagian besar adalah glukosa. Melalui glikolisis dan kemudian dalam reaksi siklus asam sitrat (TCAC), glukosa dioksidasi untuk akhirnya membentuk CO2 dan air, menghasilkan energi, sebagian besar dalam bentuk ATP. Reaksi insulin, dan mekanisme lainnya, mengatur konsentrasi glukosa dalam darah. Kadar gula darah puasa yang tinggi merupakan indikasi kondisi pradiabetes dan diabetes.

Glukosa merupakan sumber energi utama bagi otak, dan karenanya ketersediaannya mempengaruhi proses psikologis. Ketika glukosa rendah, proses psikologis yang membutuhkan upaya mental (misalnya, pengendalian diri) terganggu.

Glukosa dalam glikolisis

Penggunaan glukosa sebagai sumber energi dalam sel adalah melalui respirasi aerobik atau anaerobik. Keduanya dimulai dengan langkah awal jalur metabolisme glikolisis. Langkah pertama dari ini adalah fosforilasi glukosa oleh heksokinase untuk mempersiapkannya untuk pemecahan kemudian untuk menyediakan energi.

Alasan utama untuk fosforilasi glukosa segera oleh heksokinase adalah untuk mencegah difusi keluar dari sel. Fosforilasi menambahkan gugus fosfat bermuatan sehingga glukosa 6-fosfat tidak dapat dengan mudah melintasi membran sel. Langkah pertama yang ireversibel dari jalur metabolisme adalah umum untuk tujuan pengaturan.

Sebagai pendahulu

Glukosa sangat penting dalam produksi protein dan metabolisme lipid. Juga, pada tumbuhan dan sebagian besar hewan, itu adalah prekursor untuk produksi vitamin C (asam askorbat). Ini dimodifikasi untuk digunakan dalam proses ini oleh jalur glikolisis.

Glukosa digunakan sebagai prekursor untuk sintesis beberapa zat penting. larutan pati Pati, selulosa, dan glikogen ("pati hewan") adalah polimer glukosa umum (polisakarida). Laktosa, gula utama dalam susu, adalah disakarida glukosa-galaktosa. Dalam sukrosa, disakarida penting lainnya, glukosa bergabung dengan fruktosa. Proses sintesis ini juga bergantung pada fosforilasi glukosa melalui langkah pertama glikolisis.

Sumber dan penyerapan

Semua karbohidrat makanan utama mengandung glukosa, baik sebagai satu-satunya bahan penyusunnya, seperti pada pati dan glikogen, atau bersama-sama dengan monosakarida lain, seperti pada sukrosa dan laktosa. Dalam lumen duodenum dan usus halus, oligo- dan polisakarida dipecah menjadi monosakarida oleh glikosidase pankreas dan usus. Glukosa kemudian diangkut melintasi membran apikal enterosit oleh SLC5A1, dan kemudian melintasi membran basalnya oleh SLC2A2. Beberapa glukosa langsung menuju ke sel-sel otak dan eritrosit, yang sementara itu sisanya membuat jalan ke hati dan otot, di mana ia disimpan sebagai glikogen, dan ke sel-sel lemak, di mana ia dapat digunakan untuk reaksi kekuatan yang mensintesis beberapa lemak. Glikogen adalah sumber energi tambahan tubuh, disadap dan diubah kembali menjadi glukosa ketika ada kebutuhan energi.

KA-EN Obat Apa?


Apa Indikasi, Manfaat, dan Kegunaan KA-EN?

Indikasi merupakan petunjuk mengenai kondisi medis yang memerlukan efek terapi dari suatu produk kesehatan (obat, suplemen, dan lain-lain) atau kegunaan dari suatu produk kesehatan untuk suatu kondisi medis tertentu. KA-EN adalah suatu produk kesehatan yang diindikasikan untuk:

KA-EN diindikasikan untuk memelihara keseimbangan elektrolit dan air untuk pasien yang tidak memperoleh makanan yang tidak cukup.

Sekilas tentang elektrolit
Elektrolit adalah mineral bermuatan listrik yang ada pada tubuh manusia. Elektrolit bisa ditemukan di dalam darah, keringat, air seni, dan cairan tubuh lainnya. Zat-zat yang disebut sebagai elektrolit, antara lain sodium, potasium, klorin, magnesium, kalsium, dan bikarbonat.

Elektrolit memiliki fungsi untuk menjaga cairan dalam tubuh, menjaga keasaman darah (pH), dan membantu kerja fungsi otot. Keseimbangan elektrolit didalam tubuh dapat membantu kerja otot, darah, dan fungsi tubuh yang lain. Eletrolit yang dibutuhkan tubuh adalah natrium, kalsium, kalium, klorida, fosfat, dan magnesium.

Kadar elektrolit dalam tubuh dapat berubah menjadi terlalu rendah atau terlalu tinggi. Hal ini disebabkan ketika terjadi perubahan jumlah cairan pada tubuh karena dehidrasi atau overhidrasi. Penyebab terjadinya perubahan cairan adalah karena obat-obatan, muntah, diare, berkeringat, atau masalah pada ginjal. Kadar elektrolit yang sering kali berubah adalah kadar natrium, kalium, atau kalsium.

Berapa Dosis dan Aturan Pakai KA-EN?

Dosis adalah takaran yang dinyatakan dalam satuan bobot maupun volume (contoh: mg, gr) produk kesehatan (obat, suplemen, dan lain-lain) yang harus digunakan untuk suatu kondisi medis tertentu serta frekuensi pemberiannya. Biasanya kekuatan dosis ini tergantung pada kondisi medis, usia, dan berat badan seseorang. Aturan pakai mengacu pada bagaimana produk kesehatan tersebut digunakan atau dikonsumsi. Berikut ini dosis dan aturan pakai KA-EN:

Obat Keras. Harus dengan Resep Dokter.

Dosis bersifat individual, disesuaikan dengan berat badan, usia, dan kondisi pasien.

Bagaimana Cara Penyimpanan KA-EN?


Simpan pada suhu di bawah 30 derajat Celcius.


Pertanyaan yang Sering Diajukan

Apakah Aman Menggunakan KA-EN Saat Mengemudi atau Mengoperasikan Mesin?

Jika Anda mengalami gejala efek samping seperti mengantuk, pusing, gangguan penglihatan, gangguan pernapasan, jantung berdebar, dan lain-lain setelah menggunakan KA-EN, yang dapat mempengaruhi kesadaran atau kemampuan dalam mengemudi maupun mengoperasikan mesin, maka sebaiknya Anda menghindarkan diri dari aktivitas-aktivitas tersebut selama penggunaan dan konsultasikan dengan dokter Anda.

Bagaimana Jika Saya Lupa Menggunakan KA-EN?

Jika Anda lupa menggunakan KA-EN, segera gunakan jika waktunya belum lama terlewat, namun jika sudah lama terlewat dan mendekati waktu penggunaan berikutnya, maka gunakan seperti dosis biasa dan lewati dosis yang sudah terlewat, jangan menggandakan dosis untuk mengganti dosis yang terlewat. Pastikan Anda mencatat atau menyalakan pengingat untuk mengingatkan Anda mengenai waktu penggunaan obat agar tidak terlewat kembali.

Apakah Saya Dapat Menghentikan Penggunaan KA-EN Sewaktu-waktu?

Beberapa obat harus digunakan sesuai dengan dosis yang diberikan oleh dokter. Jangan melebih atau mengurangi dosis obat yang diberikan oleh dokter secara sepihak tanpa berkonsultasi dengan dokter. Obat seperti antibiotik, antivirus, antijamur, dan sebagainya harus digunakan sesuai petunjuk dokter untuk mencegah resistensi dari bakteri, virus, maupun jamur terhadap obat tersebut. Konsultasikan dengan dokter mengenai hal ini.

Jangan menghentikan penggunaan obat secara tiba-tiba tanpa sepengetahuan dokter, karena beberapa obat memiliki efek penarikan jika penghentian dilakukan secara mendadak. Konsultasikan dengan dokter mengenai hal ini.

Bagaimana Cara Penyimpanan KA-EN?

Setiap obat memiliki cara penyimpanan yang berbeda-beda, cara penyimpanan dapat Anda ketahui melalui kemasan obat. Pastikan Anda menyimpan obat pada tempat tertutup, jauhkan dari panas maupun kelembapan. Jauhkan juga dari paparan sinar Matahari, jangkauan anak-anak, dan jangkauan hewan.

Bagaimana Penanganan KA-EN yang Sudah Kedaluwarsa?

Jangan membuang obat kedaluwarsa ke saluran air, tempat penampungan air, maupun toilet, sebab dapat berpotensi mencemari lingkungan. Juga jangan membuangnya langsung ke tempat pembuangan sampah umum, hal tersebut untuk menghindari penyalahgunaan obat. Hubungi Dinas Kesehatan setempat mengenai cara penangangan obat kedaluwarsa.


Apa Efek Samping KA-EN?

Efek Samping merupakan suatu efek yang tidak diinginkan dari suatu obat. Efek samping ini dapat bervariasi pada setiap individu tergantung pada pada kondisi penyakit, usia, berat badan, jenis kelamin, etnis, maupun kondisi kesehatan seseorang. Efek samping KA-EN yang mungkin terjadi adalah:

Efek samping yang mungkin terjadi adalah:

  • Intoksikasi cairan
  • Tromboflebitis (peradangan pada pembuluh darah balik)
  • Edema paru, otak, dan perifer

Apa Saja Kontraindikasi KA-EN?

Kontraindikasi merupakan suatu petunjuk mengenai kondisi-kondisi dimana penggunaan obat tersebut tidak tepat atau tidak dikehendaki dan kemungkinan berpotensi membahayakan jika diberikan. Pemberian KA-EN dikontraindikasikan pada kondisi-kondisi berikut ini:


Tidak boleh diberikan pada penderita gangguan irama jantung, muatan natrium yang berlebihan, penderita hiperkalemia (kadar kalium lebih dari normal), oliguria (pengeluaran urin kurang dari 400 ml/kg/hari pada orang dewasa).